
Oil

111

I 0

Li
11"8_

Hilli .25 lililj.4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF S1ANDARD5-1963=A



DOCUMENT RESUME

ED 060 919 52 LI 003 610

AUTHOR Silver, Steven S.; Meredith, Joseph C.
TITLE, DISCUS Interactive System Users' manual. Final

Report.
INSTITUTION California Univ., Berkeley. Inst. of Library

Research.
SPONS AGENCY Office of Education (DHEW), Washington, D.C. Pure&

of Research.
BUREAU NO BR-7-1085
PUB DATE Sep 71
GRANT 0EG-1-7-071085-4286
NOTE 173p.;(11 References)

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS *Automation; Computer Assisted Instruction; Computer

Programs; Data Bases; Electronic Data Processing;
*Information Processing; *Information Retrieval;
*Library Education; *Library Science; Man Machine
Systems; Manuals; Programing Languages; Research

IDENTIFIERS *University of Californ:La Berkeley

ABSTRACT
The results of the second 18 months (December 15,

1968-June 30, 1970) of effort toward developing an Information
Processing Laboratory for research and education in library science
is reported in six volumes. This volume contains: the basic on-line
interchange, DISCUS operations, programming in DISCUS, concise DISCUS
specifications, system author mode, and exercises. DISCUS is an
interpretive man-computer interface system. The six parts of this
manual contains: (1) an introduction to the general idea of computer
assisted instruction, (2) an explanation of the several DISCUS
statements, (3) a discussion of the role of the programmer vis-a-vis
the author/instructor, (4) definitions and specifications, (5) a
description of the program debugging facilities provided by the
DISCUS language and (6) six series of exercises supplementing Pa ts
II and III. (Other volumes of this report are available as LI 00 607
through 003609, and LI 003611). (Author/NH)



U.S. DEPARTMENT OF HEALTH,
EDUCATION 84 WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO.
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OP ORGANIZATION ORIG.
INATING IT POINTS. OF VIEW OR OPIN-
IONS STATED CIO NOT NECESSARILY

CZ) REPRESENT OFFICIAL OFFICE OF EMT-

NZ)
CATION POSITION OR POUCY FINAL REPORT

Project No. 7-1085
Grant No. 0EG-1-7-071085-4286

DISCUS INTERACTIVE SYSTEM
USERS' MANUAL

By

Steven S. Silver
Joseph C. Meredith

Institute of Library Research
University of California
Berkeley, California 94720

September 1971

The research reported herein was performed pursuant to a grant
with the Office of Education, U.S. Department of Health, Education,
and Welfare. Contractors undertaking such projects under Govern-
ment sponsorship are encouraged to express freely their professional
judgment in the conduct of the project. Points of view or opinions
stated do not, therefore, necessarily represent official Office
of Education position or policy.

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research



TABLE OF CONTENTS

INTRODUCTION

page

Definition, 1
Background. . . .... . . . 1

Documentation ..... 4

Users' Manual Conventions
Organization. . . . ....... 5

PART I - THE BASIC ON-LINE INTERCHANGE

Language. . . . . . . . . . . . . 4

Approach
The Nature of "Interaction"
Three DISCUS Tools
The DISCUS System
Compilation and Execution .

Operational Procedures
Student Data Sets r

. 7
8

8

9
16
16
18
19

Revision. . . .. . . ... . . . . 19

PART II - DISCUS OPERATIONS

Operation Codes 21
WRITE or W 22
WRITE(NF) or W(NF). t my ...... . 30

WRITE(ND) or W(ND). Owwwdoew w . my. .31
ANSWER or A 34
ANSWER(NF) or A(NF) 39
SCAN or SC 40
Scanning for Words 42
Scanning for Literals . . ... .. . .44

Scanning for Words and Literals Intermixed 45
Punctuation Marks and Special Characters 46
Suboperand9 47
Spoilers 50
Expanding Contents of Variables into Other Strings. .53
Variables 55
DEFINE(A) or D(A) DEFINE(C) or D(C) . . . .56
SET or S. ...... . . . . .. .57
TEST or T 62
The Decis on Process 67
MATCH and FAIL Counters 68
JUMP or J 69
Recaloitulation 69
The Block Structure (MATCH - FAIL - END) 70
BLOCK or B 77
USE or U. . ... . . . . . .77
FRAME or FR 79
NOTE or N 84

2



TABIF OF CONTENTS (cont.)

page
PART III - PROGRAMMING IN DISCUS

Identifying the Programmer 87
CAI as a Product 88
Satisfactory Computer Assisted Dialog 88
Programming as an Exercise in Anonymity . 89
Preparations 90
Corpus 91
Starred Variables 111

PART IV - CONCISE DISCUS SPECIFICATIONS

Specifications 113
Architecture 113
Requirements 113
Current Implementation 114
Glossary 116
OPCODES

. 119
WRITE or W 119
WRITE(NF) or W(NF) 119
WRITE(ND) or W(ND) 119
ANSWER or A . . . . . . .... . . 120
ANSWER(NF) or A(NF) 122
SCAN or SC 123
DEFINE or D 126
SET or S 127
TE8T or T 130
JUMP or J

_ _ 130
MATCH or M .

. . . 131
FAIL or F 131
BLOCK or B 131
FRAME or FR 132
NOTE or N 132
END or E 132
USE or U 133
Job Control Language for Compiling DISCUS 134

PART V - SYSTEM AUTHOR MODE

Dbscription 137
ndstinguished from Proctor Author Mode 137
Diagnostic Display 138
System Author Mode Commands 138
EXIT (Berkeley) 140
END (UCLA) 140
EDITING 140

PART VI - EXERCISES 141



FOREWORD

This report contains the results of the sec nd 18 months (December 15,
1968 - June 30, 1970) of effort toward developing an Information Pro-
cessing Laboratory for research and education in Library science. The
work was supported by a grant (0EG-1-7-071085-4286) from the Bureau of
Research of the Office of Education, U.S. Department of Health,
Education, and Welfare and also by the University of California. The
principal investigator was M.E. Maren, Professor of Librarianship.

This report is being issued as six separate volumes by the Institute
of Library Research, University of California, Berkeley. They are:

Maron, M.E. and Don Sherman, et al. An Information Processin
Laboratory_for Education and Research in Libra Science: Phas

Contents--Introduction and Overview; Problems of Library
Science; Facility Development; Operational Experience.

Mignon Edmond and Irene L. Travis. LABSEARCH:
Search System Terminal Users' Manual.

ILR Ass ciative

Contents--Basic Operating Instructions; Commands; Scoring
Measures of Association.; Subject Authority List.

' Meredith, Joseph C. eferenc Search S stem (REFSEARCH) Users' M nual.

ContentsRationale and Description; Definitions; Index and
Coding Key; Retrieval Procedures; Examples.

' Silver, Steven S. and Joseph C. Meredith. DISCUS Interactive
System Users' Manual.

Contents--Basic On-Line Interchange; DISCUS Operations;
Programming in DISCUS; Concise DISCUS Specifications;
System Author Mode; Exercises.

Smith, Stephen F. and William Harrelson. TMS: A Terminal Monitor
stem for Information Processin

Contents--Part I: Users' Guide - A Guide to Writing Programs
for TMS

Part II: Internals Guide - A Program Logic Manual
for the Terminal Monitor System

Aiyer, Arjun K. The CIMARON S:stem: Modular Pro:rams for the
Organization and Search of Large Files.

Contents--Data Base Selection; Entering Search Requests; Search
Results; Record Retrieval Controls; Data Base Generation.

Because of the joint support provided by the File Organization Project
(0EG-1-7-071083-5068) for the development of DISCUS and of TMS, the volumes
concerned with these programs are included as part of the final report for
both projects. Also, the CIMARON System, whose development was supported by
the File Organization Project, has been incorporated into the Laboratory
operation and therefore, in order to provide a balanced view of the total
facility obtained, that volume is included as part of this Laboratory pro-
ject report. (See Shoffner, R.M., et al., The Organization and Search of
Biblio ra hic Records in On-Line CorauterSstel_par_.)

4



ACKNOWLEDGMENTS

Principal assistance in formulating the system specifications
of DISCUS was provided by Allan Humphrey, Project Manager, Institute
of Library Research. During the design and development phase, the
project benefited from the active support of the staff of the Campus
Computing Network, University of California at Los Angeles, and the
use of its services and facilities.

During the entire period of testing and validating the system,
and later in connection with the drafting of this manual, Rodney Randall,
Systems Programmer, Institute of Library Research, participated very
actively and effectively, contributing many hours of his personal time.
He is solely.responsible for the PILOT-to-DISCUS translator which
automatically converts PILOT source coding to comparable DISCUS code.

In addition, we wish to thank and to commend the.work of the In-
stitute personnel who prepared these pages for publication:
Ellen Drapkin, Carole Fender, Bettye Geer, Linda Herold, Jan Kumataka,
Barbara Parrish, and Rhozalyn Perkins.



INTRODUCTION

DEFINITION DISCUS is an interpretive man-computer

interface system, currently implemented

as a conversational CAI language. It is

programmed entirely in assembly language, for the IBM 360

series.

BACKGROUND In July of 1967 the Institute of Library

Research initiated Project No. 7-1085,

An Information Processing Laboratory for

Education and Research in Library Science, sup7.2orted under Office

of Education grant No. 0E0-1-7-071085-4286, with cOntributory

support by the University of California. In the design of such

a laboratory, one of the important aspects to be investigated

was the suitability of Computer Assisted instruction (CAI) as

a means of presenting certain types of library science materials

to students in.a graduate School of Librarianship. We needed

to know what prior preparation of such materials would be re-

quired, what would be the programming problems in developing

an on-line dialogue for instructional purposes, and how best

to implement this kind of facility for graduate studies..

These requirements led to the actual writing and program-

ming of a substantial amount of instructional material in the

CAI medium, and to its implementation in the Information Pro-

cessing Laboratory - using first teletype and typewriter termi-

nals, and subsequently cathode ray tube (CRT) terminals acquired

under a University grant for innovative projects in education.

When our research on the Information Processing Labora-

tory first began, we investigated the then existing

languages of the type known as "selected character-string



match languages," i.e., those capable of scanning free input

for specified key elements, then acting on success or failure

in finding these elements as instructional branching determin-

ators. Among those considered, a new language under develop-

ment in the Office of Information Systems, University of

California at San Francisco, called PILOTS, appeared to be the

most promising, and accordingly it was chosen as the new lan-

guage in which we would encode our first courses of instruction.

However, the choice was necessarily provisional, since PILOT

itself was still under development, and there was no guarantee

that it would stabilize in exactly the form which would be best

for the system envisaged for the Information Processing

Laboratory.

During 1968 and most of 1969, most of our CAI materials

were programmed in PILOT, and were run under the PILOT system

operating on an IBM 360/50 at the San Francisco campus Computing

Center, with linkage by commercial grade telephone lines and

acoustic couplers to our mechanical termineas in the Laboratory.

This arrangement was oocasioned by the fact PILOT requires con-

siderably more core memory than was available to us through the

IBM 360/40 system serving the other needs of the Information

Processing Laboratory, sited on the Berkeley campus. At the

same time it demonstrated the feasibility of such an operation

conducted at a remote distance from the central processing unit.

With the acquisition of the CRT system as the primary

terminal hardware for the Laboratory, the need for CRT-compatible

software became controlling. Since PILOT does not provide this

kind of interface, it was necessary for us either to try to write

one or to adapt another language which already incorporated this

feature. The latter appeared to be tbe more feasible course,

especially in view of the problem of core requirements raised

by continued use of PILOT.

*Karpinski, R., et al, P1LOT....a conversational language -
User Guide. Office of Information Services, University of Cali-
fornia Medical Center, San Francisco, California. 12/1/68.

-2-

7



Meanwhile, the Institute of Library Research at the University

of California at Los Angeles had generated certain papers dealing

with LYRIC, the CAI language developed by Gloria M. and

Leonard C. Silvern.* In the fall of 1968, Steven S. Silver

(Staff, Institute of Library Research, UCLA) undertook to

examine the feasibility of adapting LYRIC to our needs. However,

the problem of making the necessary changes proved more formidable

than that of writing a new language from the beginning, and in

January, 1969, it was decided that we should proceed on the latter

basis. We were aware, of course, that there is much to be said

in favor of standardization of CAI languages, but felt that in

the context of the kind of research we were performing, a new de-

parture from existing forms was justified. It now appears that

much additional research and development work remains to be

done before a complete spectrum of CAI language characteristics

and capabilities will be available, and that standardization should

be based on such a spectrum rather than on an attempt to make all

programs look alike.

The features to be embodied in the new language were the

subject of numerous exchanges between Institute staff at Berkeley

and Los Angeles, and the version finally decided on was specified

on March 24, 1969. These specifications followed the dicta that

the system:

(1) accommodate natural language input

*Described in Computer-assisted instruction: specsfq-cations
for CAI programs and programmers, by Gloria M. Silvern and
Leonard C. Silvern. Proceedings of the 21st Annual Conference of
the Association for Computing Machinery. ACM Publ. P-66
(Thompson Book Co., Washington, D.C., 1966) 1. 57-65.

Three of the papers referred to are limited distribution
items. The faurth, A Description of LYRIC, a language for remote
instruction by computer, by Steven S. Silver, appears as Appendix III
in the final report on Project No. 7-1083, Grant No. GEG-1-7-
071083-6068, A Study of the Organization and Search of Bibliographic
Holdings Records in On-line Computer Systems: Phase I, by
Jay Cunningham, Will Schieber, and Ralph Shaffner, Institute of
Library Research, University of California, Berkeley, California,
March, 1969.



(2) maintain individual student data

(3) restart individual students at the appropriate
location, following a period of sign-off

(4) operate under a multi-course, multi-terminal tine
sharing system

(5) provide interface with CRT terminals

(6) use as little core memory as possible, both in
compiling and in execution

Owing to the fact that a considerable amount of actual pro-

gramming had been carried out prior to the final specification,

it was possible to implement the new language for operational

testing in May, 1969. In July, 1969, it was implemented at both

the Berkeley and the UCLA campuses under the name of "DISCUS". Since

that time, it has been undergoing continuous testing, evaluation,

and revision. We now feel that it is sufficiently reliable and

effective to justify its release for general use.

DOCUMENTATION Complete documentation is available for

prospective users of DISCUS, at cost, and

with the understanding that suitable

credits will be accorded to the Office of Education, Department

of Health, Education, and Welfare for their support, and to the

Institute of Library Research, University of California.

USERS' MANUAL Since there are two kinds of users to
CONVENTIONS

be considered, one concerned with the pro-

gramming and implementation of materials

in the system and the other with actual consummation of dia-

logue at the terminal, we have adopted the following convention

for the purposes of this manual:

By USER is meant the author, instructor, or coder using

the DISCUS system to develop instructional or

other dialogue materials.

By STUDENT is meant a person using a CRT terminal, inter-

acting with the system. (It should be understood,

however, that the system is not necessarily limited

-4-



to educational uses.) Note also that the USER

(i.e., author) must use the system as does a

STUDENT in order to prepare and debug instructional

programs.

A glossary of technical terms as they are used in this manual

is provided in Part IV (CONCISE DISCUS SPECIFICATIONS).

Where necessary to draw attention to one or more blanks in

examples given in the text where their presence might be overlooked,

they are represented by the letter "b" with hyphen over-strike,

thus:

= blank.

ORGANIZATION It is not intended that this manual be read

in strict page sequence. It should be

read and studied in much the same way

as that in which it was written - as an interweaving of needs

and purposes, of explanation and speculation, of rules, examples,

warnings, and invitations. One should not feel uneasy in exploring

this material in seemingly random fashion, nor too exasperated when

he finds it necessary to retrace earlier steps.

What we seek is a construct in the ancient sense of a piling

up, a heaping together of elements which will in due course com-

bine themselves in a manifest pattern. The functional relation-

ships of the various pieces of the system cannot be well understood

until something (not necessarily everything) is known about each.

Until a concept of these relationships is achieved, the pieces

themselves will have little meaning.

The manual is organized in six parts, as follows:

I. THE BASIC ON-LINE INTERCHANGE

This part is intended to introduce the general idea of

CAI programming, and to demonstrate the operation

of three of the standard DISCUS commands.

-5-

10



II. DISCUS OPERATIONS

An explanation of the several DISCUS statements, and

a discussion of the decision process, block structures,

and variables.

III. PROGRAMMING IN DISCUS

Discussion of the role of the programmer vis-a-vis

the author/instructor. Technical considerations

bearing on the design of CAI routines. Examples of

useful subroutines. Advanced DISCUS programming.

IV. CONCISE DISCUS SPECIFICATIONS

Definitions and specifications.

V. SYSTEM AUTHOR MODE

Description of the program debugging facilities provided

by the DISCUS language.

VI. EXERCIES

Six series of exercises supplementing Parts II and III.

-6-



PART I - THE BASIC ON-LINE INTERCHANGE

LANGUAGE The kind of programming we will be

dealing with is generally termed "high

level," in that it rises atop a sub-

structure of service routines prescribed in great detail, rou-

tines which we can rely upon without worrying about how they

do the things they do. Theoretically, the highest level of

programming language would be ordinary written communication,

as if we were to tell the computer, in so many words, "I want

you to program yourself to discuss counterpoint," or "How are

you feeling today?" Of course at such a level, or any other

level above that of detailed bit-manipulation, one does not

really communicate with a computer, but with another person,

one who has - we hope - foreseen at least part of our needs and

has provided a program to accommodate them.

Unfortunately, the more elaborate the structure, the more

costly becomes the effort of maintaining verbal or near-verbal

communication through the computer. Simplicity at the top ca'n

mean ghastly complications near the bottom, all of which exact

a price in terms of computer resources.

DISCUS tries to cut through some of these complications by

dealing with the computer's operating system in quite funda-

mental terms rather than through the intermediation of one of

the medium- or high-level languages such as FORTRAN, SNOBOL, or

PL/1. This accounts for DISCUS' speed and economy, as well as

for the fact that not everything is made simple and easy for

the user (i.e., the programmer or encoder ). In order to program

properly in DISCUS - that is, to write conversational sequences

of real versatility and power - the user mmst be adept with a

number of highly specialized tools in various combinations,



rather than with a number of all-purpose tools.

APPROACH In trying to decide how to present a

system which needs to be seen in its

entirety in order to be perceived as a

system at all, we have concluded that a very general approach

will be well worth the risk of a few initial misconceptions which

will be readily corrected in subsequent portions of the Manual.

THE NATURE OF In order to establish an "interactive"
"INTERACTION"

situation, the programmer wants to force

the computer to respond in a certain way

to stimuli coming to it from some outside source - in our case

from a CRT (cathode-ray tube) terminal. Basically the stimulus

will always be a button-push, such as the user pressing (or

thumping, if he likes) a key marked "attention," or "send," or

"interrupt," or "carriage return". This act is like prodding a

dumb animal with a stick. One expects a response of some kind

unless the brute is very sick indeed. Usually the prod means

"Hey, look what I wrote for you on my keyboard!"

The computer looks.

Its program tells it to react in a certain way to what it

sees, depending on what that happens to be.

It reacts, usually by putting together some kind of message

and flipping it to a slow-footed retainer for inscribing on the

face of the cathode-ray tube screen at the terminal. If we con-

verted microseconds to a more comprehensible scale, we might say

that the computer handed the message to a stone-carver who only

worked Tuesdays - but that would be all right, since the terminal

user wouldn't be heard from again for about a year anyway.

It is customary to represent a dialogue between the computer

and the individual as beginning with the computer, but this is in-

accurate and can be quite misleading. The computer always has to be

13



prodded, even before it will say "Sign in, please." Viewed in

this light, every action of the computer is a reaction. The human

is always the protagonist, even though at times he may feel quite

otherwise.

The business of the CAI programmer is to equip the computer

with adequate instructions to permit it to cope in some reason-

able way with questions, commands0 and statements expressed in

ways that are human and therefore subtle, unpredictable, and messy.

THREE DISCUS TOOLS In order to demonstrate the basic mechan-

ism, we now provide the user with three

relationship.

program:

basic tools with which he can simulate this

With these tools he can even write a primitive DISCUS

A codeword - ANSWER meaning ',4t this point in the program
the human types something"

A codeword - SCAN meaning "Try to recognize, in the
answer, something speci-
fied here"

A codeword - WRITE meaning "Write on the CRTscreen
whatever is specified
here"

SCAN and WRITE always refer to something specified by the coder:

[SCAN GREEN

PRITE1 CORRECT

ANSWER merely receives an unpredictable input typed by the student:

ANSWER ( ? )



Observe the semicolons associated with each of the three code-

words. They mark the end of that particular piece of coding,

or statement. In other words, they "delimit the statement."

There are several additional codewords in the DISCUS system,

but these three will suffice for the moment. Suppose we arrange

them in a circle, to show the basic action-reaction cycle.

The computer ("central processing unit") does all its work

in the shaded part of the diagram, in the space of, say, 1/1000

second. The solid line represents the stone carver at work,

hacking out the display at the rate of 250 characters per second.

The unshaded part represents the student's reaction, occupying

10, 15, 30 seconds or more...however long it takes him to read

what has been written for him on the screen, to type in something

new, and to push the "send" button.



Proportioned according to time, the diagram would look

like this:



Computer procesatag
contentedly along

Yes young man?'

THE KINDLY
PROFESS OR
ROUT INE

SJEB I'm here for my hysics leseon.
I-

1

SCAN phyeics

(What's that7
Oh. Mmmm. Mist
have dozed off.)

-hsed?
hat
e u

a vor

1WRITE Well. well. What do you yant to know about physics?'

WRITE Sorry. my Ecology clase is too full already.;

(Nov I can forget about
hie problem for e while



Another way to represent the process is with the coded

statements themselves:

0 represents the point where the "send" push or prod or
is administered.
represents the point where the computer turns to other
duties.

There is virtually no limit to the nutber of SCANs and

WRITEs that can be programmed to follow a "send" signal:

ANSWER

SCAN

SCAN

ne---WFaTE

WRITE

CAN

ITE

Each of the four SCANs above could look for something different in

the answer, and each of the WRITEs might be suppressed if the SCAN

preceding it failed to find that something. In that little word "if"

we become involved in the decision process, represented in the cartoon
on page 12 by the inevitable diamond.

-13-



Below are some blank statements, arranged so that the decision

process can be indicated by line number. The reader is invited

to write a short program in DISCUS at this point.

InstructiQna:

Jot down a short question-

Now fill in the blanks leaving li e

until last:

(I) ANSWER

0 SCAN

WRITE

SCAN

OWA Vdre,

( tudent input)

If yes, go to_

If no, go to

Go to

If yes, go

If no, go to
WRITE Go to

SCAN If ycs, go to ;

_ to
(j) WRITE

0 SCAN

(:) WRITE

SCAB

g WRITE
WRITE

(31 ANSWER------ (next cycle)

Go to

If yes, go to_

If no, go to

Go go

Go to

If yes, go to

If no, go --

Later we shall investigate the additional codewords for accomplish-

ing the items on the right hand side of the page_ but for the pre-

send purposes we can waive this requirement.



There is no way in which we can comment on your first

piece of DISCUS programming, but it might look like something

like this:

Question: (from a previous WRITE) Where Rome?

(Y) ANSWER

SCAN

WRITE

SCAN

WRITE

SCAN

WRITE

SCAN

WRITE

SCAN

WRITE

WRITE It's in I a Where is Paris.

ANSWER

i'bi.`"k%!..
Italy

Go to 12 ;

Go to

If yes,

If no,

If yes,

If no,

go to

go to

go to

go to

3 ;

Correct ;

4 ;

;Georgia

I mean the original _;

_5

6 ;

Rome

ul_;

Europe If yes, go to 7 ;

What country in_ ; Go to 1_;

If no, go to 8 ;

Europe?

If yes, go to 9 ;Don't kn

You really should Go to 1 ;

If no, go to /V.;

Asia If yes, go to //

Hardly ; Go to 12

If no, go to 12 ;

Note that in three cases the program doubles back to the

original ANSWER statement, to give the user a chance to try a

different reply to the same question. The ability to perform

such recursion is indispensable in CAI.



THE DISCUS SYSTEM A "CAI system" comprises all the hardware

and software dedicated to the specific

purpose of computer-assisted instruction,

plus certain hardware and software customarily shared with other

systems in the same computer center. The computer itself is a

prime example of shared hardware. The computer's own operating

system (in this case IBM's 05/360) is a good example of shared

software.

Peripheral equipment, such as disc storage units, may be shared

e., their capacity allocated either on a physical location basis

or on a real time basis) or they may be dedicated to a single sys-

tem or use.

The services of control and auxiliary software, such as a

time-sharing monitor, may also be shared between systems.

Although DISCUS can be spoken of as a CAI "language it should

be thought of more as the dedicated software components a

CAI system. Only after it has been implemented in the and

actually "resides" in a computer, is the system complete and

ready to operate.

COMPILATION AND The system must be capable of two distinct
EXECUTION

and separate operations: First, it must

be able to accept programs submdtted to

it for compilation into executable form, and to compile them -

if in fact they are compilable according to the logic of the

compiler. Normally an error in the source program submitted

for compilation will not prevent compilation of the remainder

of the program; only the faulty statement (and perhaps its

associated statements) will be unexecutable.

Second, it must be able to execute programs, once they have

been accepted, compiled, and stored in its repertory. "Execution"

takes place when a student at a remote terminal is actually on
line. Execution does not change the system itself; it is simply

a product of the system according to the instantaneous conditions

-16-

21



if/Ligl 

r7byra-loqz 

ifii(771_4.c3 

aq1;27g={5 
9727g/c7 

61614, 

v_cec. <=> 

7/c/uvo7 

L 772(i702 
g/70c/C 

0421/Rok 
61/-/ 



existing within it. Execution is time-related, in the same way

that the running of a movie film is time-related - the product

in the latter case being a static image on a screen, at a single

instant, or a moving image in a span of several instants.

OPERATIONAL
PROCEDURES

Four distinct operations are involved in

the realization of the two basic functions

described on the preceding page=

1. Two blocks of code - the DISCUS COMPILER and the DISCUS

EXECUTOR - are read, assimilated, and stored by the computer.

These two blocks or modules are shown in the adjoining diagram.

2. One or more SOURCE programs, consisting of data either in the

form of tape or punched cards encoded according to the DISCUS

rules, is submitted to the computer. This can be done at any time

minutes or months after the DISCUS COMPILER and EXECUTOR have been

successfully established.

3. Whenever a SOURCE program is sub itted, the DISCUS COMPILER

attempts to compile it; that is, to arrange and store it in exe-

cutable form. It also causes a complete listing of the compiled

version of the program, called DISCUS OBJECT, to be printed.

This listing shows the numbers that have been assigned by the

COMPIT,ER to individual statements, the condition code levels at

which they will be presumed to operate, and the place in disc

storage where each is stored away. It also includes a list of

the labels attached to certain statements, showing where and how

they have been referred to in the program. It also furnishes an

indication of some types of coding errors. (A page of object

listing, reduced to 45%, is shown on page 20.)

4. The program submitted as SOURCE, having been compiled to produce

OBJECT code, can now be executed, subject to any malfunctions

which might be encountered due to the above mentioned errors. A

student activates a remote console, signs in, calls up the pro-

gram by name or number, and he is off and running. This is the EXECUTION



phase. In a time-sharing system, execution can be going on in

several different parts of the OBJECT MODULE simultaneously, or

at least switching back and forth so rapidly that it seems simul-

taneous to several individuals using the system at the same time.

STUDENT DATA SETS For each terminal in use, a portion of

the computer's disc storage must be set

aside for keeping a record of where exe-

cution is at any particular moment, for that particular terminal.

It must also contain records pertaining to that user's entire

terminal session: various scores and tallies, saved responses,

etc. This reserved section is called a "student data set."

If the system permits users to sign off and to sign back on

at a later time without having to begin all over again, it must

keep a record of the "restart" location, plus all the scores and

tallies left over from the previous session. Under this arrange-

ment the student data set is stored away on disc during the time

he is away from the terminal.

The general arrangements for "start" and restart" are touched

upon in Part IV, but the actual implementation will vary from in-

stallation to installation according to the design of the local

monitor system.

REVISION An existing OBJECT MODULE can be revised,

or "updated," by submitting a revised SOURCE

program to the COMPILER. In the course of

recompiling this code, the COMPILER will dbliterate the pre-existing

OBJECT MODULE, unless a different urea of disc storage is used for

the new material. If the original SOURCE is available to the system

on tape or disc, revision can be accomplished by using one of the

utility progrars provided by the IBM 360 Operating System. This

permits changing certain card images recorded on the tape or disc,

provided they have been nuMbered sequentially in the first place,

then ordering the revised tape to be read (as SOURCE) into the system.

24
-19-



OBJECT CODE LISTING (Reduced)

I.-Ines 698-749 = one small frame.

)17:A LIARS

PS

94 :

698 uN112
699 UNITZZ

TOO
701
702
701
704
705
706
707

700
709
710
711 MOREDUN
717
713
715
715

71!
718
719

O I 5 C U OCAPILER 112/0.31511 .11471107E OF k/ORERY RESEARCH

: CPEGCCA I

6866.16.

0 441
L P6:1$011111... .

R5f[4:01. 7 ct

STATE PEN 7
..:....

:3:.p.tf.P0:43 .
.

:I.:::1+1::rftic441. 151:1AIIRES7 A6496LL0 .01S'65Blifp_6 PiLLI:495.1314:GRIP5 Of' AIC
.

. ,5P094/4J14 ="",1431-4054 1.714 .541E0CIfIE:::pl. IEZeNICAL,161ERMATING. TY ... .

r.C44113INCE:OF.,THI1 575175.1E410S TC E0Otit-iiiii.mser. re.,144.5 1C.' DiSfrEdUI1
.(665,6:41010440*.ei AWR-e451Lv A016:4066:4.! C,A1111:1:4 +S5 C4 m"87 C2p0E0 1415111:am

5 XEX*61K: 1.t54511:00 8.111.201 f9C0101.51 455:11B11.11..4 CI: ImP71.:. X/6-71.695
. .

1"I
171/14-A32

:.:31X7441,613 _

. WO.11414",
: 441,7AMA,

115A43-W447
115468844

:::)57,A0:411G:-
..sm.esy:Aot
sisr5s4ss7,.
17:1/47A443::

. AC3X110X4 A'AFAi I rtAA -I-5.4" 13 11.1:1, OGACE C39.41.5L61 ItPCs CA NTN:RDEL WIOACW.CAN.-
:110:614:GES31:.12.6ELF Wel 1.. 1'-1" 0:155FPC147I.74.1r IL: .141C4:4.3,X4421,141/./.. . IL .r/G4.5Cyww0t$7, EmiRTuRE DA42674/5F5* f6 r1N11 .

$ c '04.RXR':404.::04+181*10.f1S4::GPICI*Si4:-": - ...... .

W14/9 644T '.4.. ::

314104644

6
6
3
5

3

6

L 4177. EMI
LSIT771 b A uNII MICAOFERI. 15 CNC tolICA CONTAINS A S;5C.I DOCUNENT, 655152 ELLL
rICROFOPA 101CREFILMI kkICh MAY CONTAIN SEVERAL DOCU5E415 ON ONE ROLL, lA
EACH UNIT MAT ISE LABELLED. INDERED. STORED. COPIED. OR TAANSFERREO TO A VSEA TN

DEPENDENTLY GR AkY CTo.EO OCC500N7. so UNIT OICROFGPA IS SPECIALLY WEIL SUITED FO
C155EmINATICN CF TECH5ICAL LITERATURE. AMICA IS USUALLY PUBLISHED ES SEPARATE

DOCUMENTS IN 765 FORA CF 4556681. ARTICLES OX DOCURENIS CP SIMILAR ENGTH.// DO
E5 T425 EXPLAIN fkG TRAP AttGuATCLY FOR YOuF;

STORE AASI.ER.;
5 AR00y. 'ARCOT. -II

..LNITT. PLIWITT. - 101
0;
I. PC511;
rt
J PEREDUNI
6 FINE. IP YOU 401 IN wont

t lo ASK..
RAT;

J REloUR,
Ei

MORLOUN; k 16 IHAI CA5E.
T PICAOT. . 11
PI
kINCI .PIC1108.1
J AtTOURI
U.

CPACIIm Li
PI
60650 OPARE°1

ABOUT ANY OF THE OTHER TERMS, DowT

kt WILL PASS TO THt MEANING Oft

J ISCUS COPPILER 112/05/691 INSTITUTE OF LIBRARY RESEARCH

SIETA LARILS LEV 31ATERENT
720 6 4 PETOupt
721 3 EI
727 5 1 APERVA . If
723 5 WI
724 4 NW/ 'EPDXY;
723 4 J mETOLRf
726 5 Et
727 $ 1 "DISSEY. U 1

778 1 PI
719 6 WINCI 90131E3.1
700 6 4 PETCuAl
711 5 14
712 5 u NEGAIS
733 5 ri
734 k RAfrER TrAN SPIRO MORC CAI TIME ON IT NOW. f SUGGEST THAI YOU XITACR

SION OFF AND MX OUT Ah INSTRUCTOR. OP TYPE .....F.E$S... AND 1 WILL GU OM TO THE6 NEXI QUESTICIA.;
471/24=754715 6 4 5E11.8; 471/235735756 5 Ei

737 5 SC PASSI 4/1/255736
T)B 5 03 :W/RIIIIi;716 A 6 ALL RIGHT. ALT PLCASE GET CLAI1FICATIUN AT THE 711451 OPPORTUNITY.; 571721.754740 6 4 AE7TFR1
751 9 f; ;1;;=:742 5 SC SIGS OFF, 051 7 I
743 5 Pt 4/11505742

__.4/1/515753754 6 b 755 ARE Whi STORED 077.1 4/1/325755745 6 4 ENDI
756 6 ps 4/i735.745

A/1/345756747 7
748

A eel. PAPODN?, 571/T5.747J 1.517-E; 4/1/3749 REICUR A PETCLAs Ll
6.748

-. 4/1/37.749
75

.6. :.:.Ap1;iiips CM; . . . . .
- . . .

..
. ....:634341144. ": :"

17475.694

3/7/1.666
3/7/7.700

3/7/44777
3/7/65703
3/7/6.775
5/7/7.705
3/7/8.7C6

3/0/9w767
5/1/19.7011
3/7/11.709
3/7/14.710
3/7/1351t1
1/7715.712
41111.713
5/172=714
4/1/3.715
5/1/4.716
5/1/7.717
5/1/6.718
4/1/1.716

ITR2

4/1/8.720
471/9.721
471/10.722
571711.711
4/1/12./74
4/1713.725
A/I/14.726
4/1/15.727
4/1/164774
4/1/17.779
4(1/10.730
441/194731
4/17205712
4/1/21733

PAGE Li

... 4 . .........." .. - . ,. , -.44 .. Ii77!i1,454 ,
-

Y>S- : REILI 4E6174: ; At CvI5 PUEN+:4NEkr::Ah640 MC 4 561E11.546 OVAICIO 42v74 AOGG .ICAOCION:"151 :::: A 71 4.4133. 06'.511r:PAGt57B;.667Cc ci.e --- IPOCa4 dsclui....f ,
. . - . . ... 4kiii;',Nr-

.

, . re+ ..07c401:::-. srocci.. N7-045 PAIWYOAW:dawP.46. A. 5AYWAIT EempINL OtTP iffliffikko PEEC4C*::
,_ ..

. 715 ,- . .4 LIA1.2/PABSS"YRSfm0 0.405*KIPAIR/6"OpFRAVJOBill miC4C.AC4
: /56 0066E 00607. A 11 '73115 .601k:1::1136**::sAl0.L6 . Et. R. A A11:6sjy .G:G#0.;48.i.441... -fRxic,t- flICliDGAR.

. .. I :":: .757 . :- ' I. .:CS. PP FAXVY.Y.StNpi:0110kr4CAB44:::00$AACGOOkiX:11t4'60;6:1: . .' ' . -.-- .4.40.1").!.756 .0.13727 C. ; ss:e r, - 4.:41:4*10 1556kt:Aiii4=641A5D 0*::4414MC:OtA0AA:.41i-..1 01676.1.01 I Of.: 13T ': :-, ' : .15.1 '' .- 6" iie.:1-..I.C.Wes040.*.theUMAk44AANW:Olepc-xxv.:WNieS.:-COEF.4(001.4J RICCRO4A3,'"
: 5.3qiEsi54"."A6861/.

r:::Ap:1*.As7N3cOtt:-//11ERC:..B/0putt::0:+::Utik144:4:=0**C4B45R1 to Ale itilidete -Affil..:.T,: - ........... :.. -A .-/J 4 1.xi5 - !,W* s MX pAG EP Y.,' +c4:4.0)T,CrtBA111.9444:"Mfg*D4+1X%
. - . - - :- Akii)ihiBbr.: 4

'Y1.2 BP c ,...,-:.,-G.
ApTek4W1. RERf .15. me .C1.14t5AL -.04,0;1.1,315. 406161.3 LA, 1IPPIP,Tig I : ''. :- ..:.Si4ifiwiaa ..

., .

gial -Sacscs s s 5.1SAW}::.1X 4Gb AlIf .116114-xsg640 ssynia sspri. , ,. .. . .

'- . ., .. - .
":''".'"*. , '



PART II - DISCUS OPERATIONS

OPERATION CODES A list of the several DISCUS OPCODES

Long_fprm

which govern execution of program

statements follows:

Short form 'See page

WRITE
WRITE
WRITE
ANSWER

(NF)
(ND)

W
W(NF)
W(ND)
A

22
30
31
34

ANSWER (NF) A(NF) 39
SCAN SC 4o
DEFINE (A) D(A) 56
DEFINE (C) D(C) 56
SET S 57
TEST T 62
MATCH M 68
FAIL F 68
END E 68
JUMP j 69
BLOCK B 77
USE U 77
FRAME FR 79
NOTE N 84

There is no difference in operation between the long and

short forms of OPCODE. Until one has become thoroughly

habituated to working with DISCUS, the long form is recom-

mended, because it makes printed listing of compiled pro-

grams somewhat easier to read.

The DISCUS compiler automatically assumes that any

of the above forms is in fact an OPCODE if it is preceded by

a colon (marking the end of a preceding DISCUS label),

with any number of intervening blanks;

a semicolon (marking the end of a preceding DISCUS

statement), with any number of intervening

blanks;

nothing at all (i.e., the beginning of the program);

and is followed by a blank. No special punctuation or other



character is required to indicate its status as an OPCODE,

and there is no danger of a properly positioned OPCODE being

interpreted as a label,or as text to be displayed:

WRITE RIGHT;

will cause

RIGHT

to appear on the CRT screen, provided the last non-blank character

preceding "WRITE" (if any ) is a delimiter (i.e., either a colon or

a semicolon.)

WRITE or W A CRT screen can be ''reritten" in one of

two ways: through execution of a pro-

grammed WRITE statement by the computer,

or by a stulent inputting characters at his terminal's keyboard.

A typical display will consist of a block ofprogrammed text, fol-

lowed by an arrow or carat indicating the starting position of

keyboard input to come, and a cursor to indicate the position in

which the next keyed character will appear.

Before the terminal-user types any characters, the screen may

look like this:

Carat indicating
that system is
waiting for input

Curso



After the terminal-user types characters, but before he presses

the "send" buttons the screen might look like this:

ARE YOU READY?
>YES_

There are three forms of WRITE commands governing WRITE

statements. Their form is independent of the purpose of
the text to be written: any one of them can be used for

conveying didactic text, for posing questions, or for res7

ponding to terminal input. Not all WRITE statements coded

by the programmer are actually displayed in a particular

terminal session. They are used selectively, depending

entirely on the path which execution takes on that occasion.

A simple WRITE or W writes the screen from the top,

after erasing all previous display material. It continues

until the end of the statement, or until the end of the screen

is reached, whichever happens. first. In the latter case,

the overflow is saved until the terminal user presses his
"send" button. This action is treated as an impromptu

WRITE command, the screen is erased, and the remainder ef
the WRITE tatement's operand (i.e., the text subject to that

WRITE command) is displayed.

End-of-line formatting is automatically performed; that

is, no word will be started that can't be finished on that
same line.

*Or other designated signal, e.g., "interrupt" or "attention,"
depending on the kind of terminal in use.



Examples

Statement_ - WRITE ABSOLUTELY RIGHT!!;

Result

Statement WRITE THE INIQUITY OF OBLIVION BLINDLY
SCATTERETH HER POPPY.;

(Throughout this manual we use an "example

screen" with a line-width of 27 characters.

Result

THE INIQUITY OF OBLIVION
BLINDLY SCATTERETH HER POPPY.

A line break may be forced at any point, inside or outside

of a word, by inserting a slash (j) in the text.

is not displayed. Thus:

- 4-

The slash



Statement - W ITE AN ELEPHA1VT IS A/MARSUPIAL/MAMALAVASTADON. ;

Result

AN ELEPHANT IS A
MARSUPIAL
MAMMAL
MASTADON.

Formatting within the line can be accomplished by inserting

blanks immediately after the slash:

Statement - WRITE AN ELEPHANT IS A/7914MARSVPIAL/
bbbbNANNALibbbbNASTADON.;

Result

(

AN ELEPHANT IS A
MARSUPIAL
MAMMAL
MASTADON.

(Note: the la symbol is used only for explication herein, when

necessary to emphasize the presence of blanks. It is never en-

coded as such. In keypunching, the space bar actually specifies

blanks, in WRITE text.)

30
-25-



The slash is a "rese2 -id character" in DISCUS. In a WRITE

statement it always mean2 qo to the beginning of the next line,"

unless

(a) it is identified a literal* by single quotes

preceding and follow_ 7 it, or

(b) it is contained in a quoted variable (discussed

on page 55 ).**

Two slashes (//) mean "go to the beginning of the next line,

then go to the beginning of the next line after that," having

the,effect of a double space. Any number of blank lines may

be created in this manner.

Statement - WRITE HERE IS A TRUE7'FALSE QUESTION
'2 LEAGUE 1 17'2 BILES1

Result

Automatic line
break

Forced line break,
and double space

Delimiting semi-
colon is not
displayed

HERE IS A TRUE/FALSE
QUESTION

1/2 LEAGUE = 1 1/2 MILES

The single quote is also a reserved character. Like the slash, it

must be specified as a literal if one desires that it be written on

the screen, but to do this we simply double it, rather than sur-

rounding it with single quotes: Thus ' , not '"

*Definition given on p.117.

**For the moment, these exceptions need not concern the reader.

***The DISCUS COMPILER always looks for pairs of single quotes. A
good way of checking coding is to make sure that the total number
of single quotes in a series of statements is an even number. The
compiler will try to turn whole pages of source programming into
a literal, following an odd-numbered single quote!



StatOtent - WRITE FELLINI"S 8 ir/ 2;

Result

Three other reserved characters need to be considered:

- the colon, which normally acts as a label delimiter

- the semicolon, " statement

- the double quote, which normally surrounds the label of
a variable whose contents are to be used at that point.

As with the slash, their special quality is suppressed by sur-,

rounding them with single quotes; they will then be displayed as

literals.

Statement - WRITE DONrrT TRUST YOUR MEMORYr;r WRITE IT
DOWNr:r/10:bbbru'LILLIOW" MOLNARs

Réduit

ii

MDONIT TRUST YOUR EMORY;
WRITE IT DOWN:

"LILLIOM" - MOLNAR

If, in the example immediately preceding, the single quotes had

been omitted from around the semicolon, it would have been treated

by the DISCUS COMPILER as a statement delimiter:



Result -

Followed by -

DON'T TRUST YOUR MEMORY

IT DOWN:
"LILLIOM" - MOLNAR

If the single quotes had bee., omitted from around the double quotes,

the compiler would have sear.hed fruitlessly for a variable called

LILLIOM. (Or if they had been (mAtted from around the colon, the

compiler might try to treat POW1 as a label - but since DOWN is not

imm3diately preceded by an active semicolon, the compiler would

give a diagnostic message.

It is possible to economize somewhat in the use of single

quotes for suppressing the special nature of reserved characters,

because fxtuILLaa enclosed within a pair of single quotes be-

comes a literal. Thus both



and

Statement WRITE 1 '2':'2'::'CLIP":'QUART

Statement - WRITE 11 ::CCIP:FQUART;

have the same

Result

Normal end-of-line formatting is not affected by the above device,

even if a line break occurs within the string surrounded by single

quotes.



WRII(NF) or W(NF) This OPCODE causes the operand which

follows it to be displayed without

end-of-line formatting.

Statement WRITE(NF) THE IAIQUITY OF OBLIVION BLINDLY
SCATTERETH HER POPPY.;

Result

THE INIQUITY OF OBLIVION BL
INDLY SCATTERETH HER POPPY.

All other conditions are the same as with plain WRITE.

-30 -



WRITE(ND) o 11D) This OPCODE causes its operand to be

displayed immediately following the

preceding WRITE operand, without first

erasing the screen. If the last preceding write statement

has carried a WRITE opcode, end-of-line formatting will continue.

Statements - WRITE THE INIQUITY OF OBLIVION BLINDLY
SCATTERETH HER POPPISEEDS.;

WRITE(ND)b....PLEASE IDENTIFY AUTHORSHIP
AND TITLE.;

Result

THE INIQUITY OF OBLIVION
BLINDLY SCATTERETH HER
POPPYSEEDS PMEASE
IDENTIFY AUTHORSHIP AND
TITLE.

If the last preceding write statement used a WRITE (NF)

opcodes the WRITE(ND) result will be unformatted.

Statements - WRITE(NF) THE INIQUITY OP OBLIVION BLINDLY
SCATTERETH HER POPPYSEEDS.;

WRITE(ND) ....PLEASE IDENTIFY AUTHORSHIP
AND TITLE.;

Result
THE INIQUITY OF OBLIVION BL
INDLY SCATTERETH HER POPPYS
EEDS PLEASE IDENTIFY AU
THORSHIP AND TITTF.

The WRITE (ND) OPCODE is especially useful for displaying

blocks of text simultaneously in smooth, consecutive format.



It can also be of service to the coder who undertakes the

revision of a long statement already keypunched. Suppose

an author or coder decides to remove a sentence from the

middle of a 1000-character WRITE statement. If only the

latter part of the statement is repunched, an unsightly gap

in the text would occur, unless the sentence happened to be

precisely 80 characters in length (which would allow him

simply to remove the one card.) His alternative, afforded

by the WRITE(ND) opcode, is to terminate the statement at

the cut and turn the remainder into a WRITE(ND) statement.

In miniature:

Statement - WRITE OATS, CAULIF _AER, FEAS, BEANS, AND
CABBAGE GROW;

Result
OATS, CAULIFLOWER, PEAS,
BEANS, AND CABBAGE GROW

_ple continued on next page)



If we were simply to substitute blanks for CAULIFLOWER, the

display would look like this=

if OATS, PEAS,
BEANS, AND CABBAGE GROW

correctible by:

Statements - WRITE OATS,;
WRITE (NF) PEAS, BEANS, AND CABBAGE GROW.:

Result bATS, PEAS, BEANS, AND
CABBAGE GROW.

If WRITE (ND) text exceeds the remaining capacity of the screen,

as mUch as can be displayed will be, and the remainder will be

saved for display on the next screen.

At this point it is suggested that the reader turn to the

exercises in Part VI (page l4).

-33-

38/:



ANSWER or A When ANSWER or A is encountered during

execution, the arrow or carat inviting

input is added to the text of the last

WRITE statement, and the computer goes into "wait state."

(Actually it is the ANSWER opcode which forces the preceding

WRITE operand out of the display buffer and onto the screen,

but this is a technical point that need not concern us at

the moment.)

While the computer is in the wait state, all processing is

suspended, and in fact nothing the student types on the screen

will be considered by the system until he presses the "send"
button. When he does, the program causes the computer to read

off the characters he has typed and to store them one by one in

a special area of computer memory which the DISCUS system sets
aside as an "answer field." If he has typed more than 250 char-

acters before pressing "send," all the excess is lost.

The ANSWER statement may be labelled in order to provide

an address to jump to during execution, but the label is never

used to refer to the contents of the ANSWER field. These

are called out and displayed, or transferred to other locations

simply by referring to "ANSWER".

Example

Statements - WRITE A SINGLE QUOTE (") IS CALLED A(N)

WHEN IT IS USED IN A CONTRACTION.;

AIVSWER;

Suppose any incorrect answer is to be quoted back to the

user, and in a particular case he has typed the word "con-
tractor." next page)

39



Statement - WRITE NO, IIANSWER" ISNIFT TTIE RIGHT ANSWER.;

Result

NO, CONTRACTOR ISN'T THE
RIGHT ANSWER.

(Example continued on next page)

-35-



or better yet

Statement - WRITE NO, 'HH!.ANSWER" ISN''T THE RIGHT
ANSWER;

Result

(

NO, "CONTRACTOR" ISN'T THE
IRIGHT ANSWER.

"ANSWER" causes only the current contents of the answer field

to be displayed. In order to store an answer for future

reference, it must be transferred to a labelled variable by

means of a SET statement (page 57 ff.).

Note that the ANSWER statement itself, in the example on the

preceding page, needs no operand. This is usually the way

it is encoded, but when the programmer wishes to supply

elements of the answer in order to influence the student in

some way, he can do so by inserting them as operand in the

ANSWER statement, thus:

Statements - WRITE WHAT ABOUT "LIQUID"AND "FLUID"W;
ANSWER THE TWO WORDS ARE ;

WRITE DO YOU REALLY THINK THAT "AffSWER"?;

(to be used if the answer is determined
to be wrong.)



Result

Before student starts
typing:

After typing but before
"send":

After "send":

WHAT ABOUT "LIQUID" AND
"FLUID"?

>THE TWO WORDS ARE

WHAT ABOUT "LIQUID" AND
"FLUID"?

>THE TWO WORDS ARE SYNONYMS

7

DO YOU REALLY THINK THAT
THE TWO WORDS ABE SYNONYMS?
>



The foregoing device is useful in two different ways. (1) It

permits giving hints outside of the basic instructional block,

and these hints perform duty as reinforcers:

Statement - W ONE OF THE MOST DREADFUL POEMS OF THE
NINETEENTH CENTURY WAS WORDSWORTH"S;

A "GOODY BLAKE AND;

0 W WISWER"IS CORRECT.:
(to be used if student answered "Harry Gill.")

and

Results

W NO, HE DIDN''T WRITE ANYTHING GALLED "ANSWER"
(to be used if he answered something else.)

"GOODY BLAKE AND HARRY GILL"

(

IS CORRECT. \

/NO, HE DIDN'T WRITE
ANYTHING CALUID "GOODY
BLAKE AND RHUBARB".



(2) It permits pre-structuring an answer in such a way that

it can be quoted later with fair assurance of a grammatical

fit.

ANSWER(NF ) or A(NF) A(NF) operates in exactly the same

way as the basic ANSWER oncode, ex-

cept that the answer is expected

at the end of the last line of displayed WRITE characters,

instead of at the beginning of the next line below and no

carat appears:

Input appears
here

This permits more natural-looking displays where formulae

or sentence-completion questions are involved. It does not,

however, offer a means of positioning the carat within

WRITE text, as might be desired in order to give realism to

some types of fill-the-blank questions. A literal carat may

be written in a WRITE statement but it will have no special

signi,icance to the succeeding ANSWER statement.



SCAN or SC The SCAN opcode invokes an operation

which is fundamental to any "character-

string match" language, i.e., one which

can detect certain prescribed elements in a string of input.

These elements may be single characters, whole words, phrases,

sentences, punctuation marks, numerals, etc. A measure of such

a language is its ability to recognize non-consecutive elements,

particularly if they are in some order other than that in which

they are listed in the SCAN operand; LED re-examine input as many

times as necessary in order to establish a certain profile; and

to deal with negations. A CAI language which cannot recognize re-

sponses outside of a limited format (such as a single button-push)

is of a different type altogether.

The basic scan statement in DISCUS consists of the SCAN opcode

followed by an operand in which the coder enters those elements

whose presence in, or absence from, student input is to be estab-

lished. Thus

working on input of

SC WHITE;

RED WRITE AND BLUE

will be satisfied, and a system condition code will be set to indi-

cate the fact. The information is typically used to dictate what

will happen next in the execution of the program.

One way of visualizing the scan operation is to think of the

operand as occupying a moving window, one which opens onto student

text. It sweeps from left to right across the input string until

it either encounters an uninsulated semicolon (signalling the end

of the statement) or "sees" a combination of characters which match

it exactly.



For example, the operand WHITE would be scanned-for sequen-

tially as follows:

RED TE AND BLUE

_ED W E AND BLUE

App WHITK AND BLUE

REfD WHITE1AND BLUE

RA_WHITE14ND BLUE Match!

RED WHITE AND BLUE

RED WHITE AND BLUE

RED WHITE AND BLUE

Actually what happens in DISCUS is that student input, pre-

ceded by a notation indicating its length, is stored in a field

called "ANSWER" when the "interrupt" or "send page" key is pressed.

The message is placed on a rack, as it were, where it can be ex-

amined in detail by the program. Only the input is thus transferred.

Neither the ANSWER opcode nor the end-of-statement semicolon is

moved to the ANSWER field.

The operand of a SCAN statement specifies the items to be

looked for in the answer, and the order in which they will be

checked. It is important that the DISCUS user understand how this

takes place. What really happens when a SCAN statement is execUted?

Before launching into the discussion, it will be well to con-

sider the definitions of "word" and "literal" as given in the

Glossary:

WORD

LITERAL

A WORD is a string of characters that does
not include imbedded blanks, special charac-
ters, or symbols, and is surrounded by
blanks, either explicit or implicit. WORDS
used in SCAN statements constitute elements
against which a user's response may be compared.

A LITERAL is a string of characters, punctuation
marks, symbols, numerals, or explicit blanks,
not used in a special code sense. In order to
be treated as a LITERAL, such a string must be
surrounded by single quotation marks. (For use
of these marks themselves as literals, see
example, page:26.) inclusion of a character in
a LITERAL .,-Ippresses any special characteristic
it may normally possess in the DISCUS system.

46



A word is commonly recognized as a word, in written or print-

ed communications, if it is preceded by one or more blanks and

followed by one or more blanks or punctuation marks. Because this

convention is almost universally accepted in the Western world, we

are able to identify individual elements as elements quite rapidly,

prior to interpreting them. Conceivably we could dispense with

this service. For example, one is able to extract meaning from

BREAKGLASSINCASEOFFIRE

thanks to some impressive computations of which the human brain is

capable. But it is much easier and faster to read (i.e., scan

identify, recognize) the message given in conventional form:

BREAK GLASS IN CASE OF FIRE

Blanks really represent non-content-bearing breaks in the informa-

tion stream, and although such breaks can be almost as useful to

a computer as they are to humans, they are useful to it in a dif-

ferent way.

not as just

Perhaps the

A computer deals with blanks as definite entities,

vague nothings on either side of something meaningful.

best way of defining "WORD"

puters and humans

two blanks.

acceptably for both coin-

is to say that it is a blank-less element between

SCANNING FOR WORDS The DISCUS system carries out the follow-

ing steps in scanning for a word specified

in a SCAN operand:

Step 1. The first word in the SCAN operand is_ identified.

Example: In SCAN THANE CAWOOR; "THANE" is considered
to be the first word, because it is the first
element not containing a blank and not en-
closed in single quotes.

Step 2. The first word is moved to a location we refer to as "the
window." Enroute, it i
and an ending blank.

SC THANE CANDOR;

InTHANEU

furnished with a beginning blank

"window"



{P_THE THANE OF CAWDORLd

Step 3. The contents_of the window are comared with the contents
of the answer field, starting with the first_string of
equal length at the extreme _left end of the ANSWER field
and moving one position at a time toward the right.

Suppose the ANSWER field contains

lbTHE THANE OF CAWDORb

and a length notation off to one side.

(The beginning and ending blanks in the ANSWER field
were added at the time student input was transferred
from the terminal.)

The scan begins. In the fifth position of the "window",
the contents of the window match exactly that which it
sees in the ANSWER field.

roTHE THANE OF CAWDORid

111 THANE14

If the ANSWER field had contained, instead, laTHE TRAIN OF

CAWDORb, the comparison would have proceeded all the way to the

end of the ANSWER field, and a failure would have resulted for

the SCAN operand in question.

Since we found a match on the first word in the example, we

proceed with the next step, which is the same as Step 1 above,

using the second word in the SCAN operand. Again, the word is

furnished with a blank fore and aft, and a notation is made that

we are in fact dealing with a word. However, this time the com-

parison begins not at the beginning of the ANSWER field, but at

the ending blank of the previous successful comparisor:

A (match)

B (starting position)

C (match)

bYRANEb

bCAWDORbi

OCAWDORM

Note that the ending blank in A overlaps the beginning blank in B.

This overlap_2!Roccur only_ if the string being compared is a word.

if the ANSWER field had contained simply 13THANE CAWDORIE, both the

first comparison and the second comparison would have succeeded,

in their first positions, even though both seem to take advantage

of the same blank in the ANSWER field.

48
-43-



SCANNING FOR
LITERALS

The DISCUS system carries out the following

steps in scanning for literals specified in

a scan operand:

Step 1. The first literal in the SCAN operand is identified.

Example. In SCAN TAR" 'VER';, "PAR' is considered
to be the first literal, because it is the
first element enclosed in single quotes.

Step 2. The material enclosed between_the uotes (but not
the quotes themselves is rnovedto_thewIndow It is NOT
furnished with beginning and endin- blanks.

SC TAR"VER';

TAR

PAR

Step 3. The contents_ of the window are cornsared with the contents
of the ANSWER field

(Assume ANSWER field contains)

19.PAROT FEVERb

Match is obtained in the second position from the left.

Step 4. apeats Stal_Ltjm,p=21that the
with the second literal at the pre,eise boundau of the,
first.

h:PAR7OT FEVERe

IPA

fVERI

It is immaterial, in scanning for literals, whether the

matching characters occur in the ANSWER field as word beginnings,

word middles, or word ends. By the same token, literals may over-

lap more than one word in the ANSWER field; i.e., may include blanks,

specified punctuation marks, etc., Thus

SC 'GT. BRIT.HISTORY-19TH CENTURY 'I

will match the following ANSWER field:

I THINK IT SHOULD BE GT. BEIT.--HISTVRY-1.9TH cENTIJRI.

It will not match a variant such as

I THINK IT SHOULD BE GT, BRIT-7RISTORY-79TH CENTURY.



Such a SCAN statement is of course very rigid, whereas

SC 'FAR"VER';

is quite the opp site, matching such things as "PARROT FEVER",

"PARLEY FOREVER", "SPARE EVERY TREE", "I'VE PARTED FROM VERONICA,"
etc.

We can conclude that literals do not, in themselves, make

the SCAN operation any more rigid than do words, provided they

are of limited length and provided they avoid specifying punctu-
ation marks and internal blanks.

SCANNING FOR WORDS
AND LITERALS INTER-
MIXED

Although word elements and literal ele-

ments in a SCAN operand are processed

somewhat differently, there is nothing

to prevent both types being used together in any combination that

best suits the programmer's objective. For example, suppose he
wants to find out if student input contains the words

BON HOMME RICHARD

or

BONHOMME RICHARD either version being
acceptable)

In such a case SC 'BON' 'HOMME' RICHARD ; would turn the trick.

Or suppose he wanted to detect the name

DIONYSUS OF HALICARNASSUS

without being fussy about the spelling. He could specify

SC ' DIO"US ' OF ' HAL' 'SUS

Note that by including blanks in the literals, the programmer effec-
tively specifies their position as word-beginnings or word-ends.

He could have specified middles:

SC 'ONY' OF 'CAR'

but with some loss of precision, in this particular case.
In both of the foregoing examples, the SCAN elements are pro-

cessed in the order in which they appear, regardless of whether
they are words or literals.



PUNCTUATION MARKS
AND SPECIAL CHAR-
ACTERS

blanks.

Before student input is placed in the

ANSWER field, the punctuation marks

( ) ! " are replaced with

I'QUIT!!!!! becomes I QUIT

1, 2, 3 becomes 1 2 3

DON'T remains DON'T

If a particular punctuation mark or special character has,

in the coding, been specified as a SCAN literal, the program

will go back and restore it to the ANSWER field, if in fact it

was typed by the student.

It should be emphasized that none of the conv ntions for

use of single quotes, double quotes colons, slashes, or semi-

colons which apply to encoded SCAN or WRITE statements affect

the student's use of these marks in his input. For example,

he doesn't need to type DON"T in order to have it recognized as

DON'T.

ADDITIONAL EXAMPLES Let us see how a scan operation involving

more complicated strings would work.

Suppose we want to scan for Don't go stay.

We would encode this in the SCAN statement as

SC DON "T GO '; STAY;

Note that we have suppressed the special nature of the single quote

by doubling it, and of the first semicolon by insulating it with

single quotes (exactly in the same way as they are treated in WRITE

operands when they are to be displayed literally (see pages 27-28)).

The last character, .e., the semicolon, remains active in its

usual role as an end-of-statement delimiter...

The Above scan operand will match student input only if

the operand contains

and

DON'T

GO

STAY

-46-

51

in that order.



The input may be festooned with all kinds of other words and marks

without spoiling,the match:

HALT---DON'T GO AWAY MAD1 PLEASE

STAY, WON'T YOU???

Obviously the more we demand in a SCAN operand, the less

chance it has of succeeding across a given set of answers,'all

expressing the same idea, but expressing it somewhat differently.

So we try to remove as many constraints as possible, in order to

improve the likelihood of matching answers which contain the essen-

tial elements.

SUBOPERANDS Often the coder will want to provide for

a number of acceptable alternatives con-

veying similar meanings, any one of which

will attain MATCH. In other words, he would like to perform a

basic "OR" operation, as if he were testing the answer against

a whole series of scans each of which started afresh at the

beginning of the ANSWER field. He cannot do this by stacking

SCAN statements.

SC 6

followed immediately by

SC SIX

will not lead to a match of 6 in the student input, because the

second SCAN statement resets whatever condition code was set by

the previous SCAN statement.

In order to describe how alternatives can be combined eco-

nomically in a single SCAN statement, we need to deal with subord-

inate parts of SCAN operands as modular entities. It is convenient

to call these "suboperands" and define them as: ANY STRING, WITHIN

AN OPERAND, THAT IS SEPARATED FROM OTHER PART(S) OF THE OPERAND BY

A COMMA OR : : "OR"-BAR (BOTH MEANING "OR"), OR BY AN AMPERSAND

(MEANING "AND").

Example: operand

SC CORN, MAIZE

suboperand suboperand

52



Operation: The program scans the ANSWER field first for CORN; if

MATCH is obtained, it sets the condition code and jumps to the

next statement, disregarding the second suboperand. If no match

is obtained on CORN, it re-scans the ANSWER field for MAIZE. If

match is obtained, it sets the condition code accordingly. Execu-

tion then passes to the next statement. If neither is found, the

condition code is set to FAIL and execution continues.

Example: (4 suboperands)

SC OATS, TEAS I BEANS 1 BLACK EYED PEAS;

("or"-bar5

Operation: The program scans for each suboperand in sequence, de-

sisting only when success is attained or the end-of-statement

delimiter is reached.

Two or more suboperands separated by (an) ampersand(s) will

both (all) be scanned before success is assured, match condition

code set,* and scan terminated. The order in which the sub-

operand elements appear in the answer is immaterial:

Example: operand

SC SLEET & SNOW
L,-

suboperand suboperand

Operation: The program scans the answer field twice, first for

SLEET, then for SNOW. Match condition code is not set unless both

are found.

This permits scanning for full permutations of lists where

order is unimportant.

Example: SC FIRE & WATER & EARTH & AIR;

Operation: Four separate scans are performed. Failure on any one

of them terminates the operation, while success is not determined

until all four have been scanned. If every possible combination

had to be set up as a separate operand or suboperand (SC FIRE WATER

EARTH AIR, WATER EARTH AIR FIRE, etc._ .;) twenty-four of them

would be required, and the whole series would have to be perrormed

to establish the absence of one of the required terms.

* Condition codes are explained in THE DECISION PROCESS (page 67).

-48-



Any combination is permissable:

FIRE & COLD WATER, EARTH & AIR, FISH CHIPS!

CAKES ALE: (six suboperands)

Operation:

1. Scan for FIRE. If unsuccessful, go to next suboperand

preceded by (1) or (,

If successful,.......

2. Scan for COLD and WATER - in that order If successful,

set match condition rode, jump to next

statement (beyond the semicolon). If

unsuccessful, go to the next suboperand pre-

ceded by (1) or (,)

3. Scan for EARTH. If unsuccessful, go to next suboperand

preceded by (1) or (,)

If successful

4. Scan for AIR. If successful, set match condition code,

skip to next statement. If unsuccessful,

go to next suboperand preceded by (1) or (,)...

5. Scan for FISH and CHIPS, in that order, with any nuMber of

characters and/or blanks intervening. If

successful, set match condition code, jump

to next statement. If unsuccessful, go to

next suboperand preceded by (1) or (,)

6. Scan for CAKES and ALE, in that order with any number of

characters and/or blanks intervening. If

unsuccessful, go to next statement.

*Additional intervening blanks in the answer will not cause f
of this scan. Neither will intervening characters, as long
long as they don't adjoin either of the specified words. For
example,

COLD WATER
COLD WATER
COLD BLUE WATER

WATER COLD

would succeed

would not succeed

'lure



From the above examples we can deduce a rule: namely, that

After scanning any suboperand ending with a

comma, or

ampersand

semicolon

SPOILERS (-1

vanes used to reduce the

success terminates the operation
failure goes to the next suboperand

success gees to the next suboperand
failure goes to the next suboperand
which is preceded by a comma or "or"-bar.

terminates the operation

In mechanics, a "spoiler" is an attach-

ment that reduces or neutralizes the

effect of a device, such as deflection

lift of an airplane wing, the tinting

blended into windshield glass, the mute on a trumpet. In

DISCUS, we use the term in

the "not" sign in a scan

SC

will match any

a more absolute sense, to apply t_

operand.

-1CATS;

answer field that does

SC

will work as follows:

not contain the word CATS.

-1C4T5, DOGS ;

Answer field

DOGS ARE FRIENDLY CRITTERS

I LIKE CATS AND DOGS

I LIKE DOGS AND CATS

CATS ARE EGOCENTRIC

Result

Succeeds

Succeeds

Succeeds

on not CATS

on DOGS

on DOGS

Fails on not CATS and
the absence of DOGS.

If one changes the order of the suboperands to

SC DOGS, -1CATS

the same results are obtained, but according to a different

progression:

DOGS ARE FW1ENDLY CRITTERS

I LIKE CATS AND DOGS

I LIKE DOGS AND CATS

CATS ARE EGOCENTRIC

Succeeds

Succeeds

Succeeds

on DOGS

on DOGS

on DOGS

Fails on the absence
of DOGS, and then again
on not CATS.



Clearly the intent of a spoiler and the words to which it applies

is best served by placing them in a suboperand ahead of a desired

element.

An important distinction must be made between the effect of

a spoiler in multi-word suboperand, and in suboperands which are

222_i2ILJLATILLLaaacill. In the former, the spoiler - regardless_

of its location - applies to each word in the suboperand. In the

latter case, only to the word or words in the suboperand which

contains it.

With either ....

SC CATS DOGS;

SC CATS, DOGS;

(These two statements
are equivalent.)

Answer field Result

DOGS ARE FRIENDLY CRITTERS Failure

I LIKE CATS AND DOGS Failure

I LIKE DOGS AND CATS Failure

CATS ARE EGOCENTRIC Failure

I LIKE HORSES Success

SC i CATS & DOGS

Answer field

DOGS ARE FRIENDLY CRITTERS

I LIKE CATS AND DOGS

I LIKE DOGS AND CATS

CATS ARE EGOCENTRIC

I LIKE HORSES

Result

Success

Failure

Failure

Failure

Failure

(Reversing the order has no effect, because both elements are

tested before scanning terminates.)

Thus if we wanted to match

I prefer Hindemith to Chaminade but not

1 prefer Chaminade to Hindemith

we would encode the scan statement either as

SC HINDEMITH CHAMINADE & -1CHAMINADE HINDEMITH;



or as

SC HINDEMITH CHAMINADE & CHAMINADE -,HINDEMITH;

But if we didn't care which he preferred as long as he specified

both but didn't mention the Scarf Dance, we could encode it

SC -16CARF & HINDEMITH & CHAMINADE

The "not" facility of DISCUS is a very powerful tool, per-

mitting one to pack into one SCAN statement a number of parameters

that ordinarily would require a whole series of statements, each

needed to detect a specific undesirable element before getting down

to the desired element and its alternatives.

The also can be used to detect simple negation, in order

reduce one particular risk of misinterloreting input:

Question W WHO IS PRESIDENT OF THE UNITED STATES

(if) Answer A NOT NIXON;

Simple scan SC NIXON; (Success)

The program reaction in sucb a case, would be exactly opposite

to the one intended. Scanning the same input with a -1 spoiler:

SC tITOT & NIXON; (Failure)

To cover a greater variety of possibilities, the scan would probably

be written

SC -, NOT & NIXON -, AIN ' 'T & NIXON -, DON 'T & NIX NO & NIXON;

[(A Boolean expression such as

(-I NOT, AIN"T, DON"T, NO) & NIXON

is not within the SCAN capability of DISCUS as currently implemented.]

The same device could be used to handle double or even triple

negatives in cases wherein these occurred as separate words, but

simple reversals of meaning do not occur consistently enough in

English to make this a very productive gambit. A really sophisti-

cated "not facility" should be able to unravel negative affixes as

well as stand-alone forms of "not", so that the true polarity of

meaning in a sentence could be established.

-52-



EXPANDING CONTENTS We have seen how DISCUS scans for elements
OF VARIABLPS INTO
OTHER STEINGS

specified in the SCAN operand. Let us now

consider scansion for elements which are

only referred-to in the operand.

The contents of a variab3e statement may be referred to by

another statement only through its address, i.e., its label. Thus

WRITE OH, THAT THIS TOO, TOO SOLID "ICECUBE" WOULD MELT;

writes the following on the screen

OH THAT THIS TOO TOO SOLID FLESH WOULD MELT

only if somewhere in the program there exists a variable whose

label is ICECUBE: and that contains the single word FLESH. If

ICECUBE contained a laundry list, the whole thing would be dis-

played between SOLID and WOULD.

With a WRITE statement the contents of a variety of labelled

data may be thus expanded into the operand. Since the ANSWER field

is a variable, its contents may also be called forth at any time,

but this should be done by referring to "ANSWER" rather than to a

label which may have been attached to the ANSWER statement itself

in a particular frame.

Thus WRITE IN SAYING" "ANSWER" "H., "NAMN", HAVE YOU

CONSIDERED THAT "HORSES"?; would be displayed as

/IN SAYING "I LITra HORSES",
ROBERT, HAVE YOU CONSIDERED

; THAT HORSES ARE RELATIVELY
INEFFICIENT?

provided I LIKE' HORSES is contained in the answer field,

ROBERT is contained in a variable labelled k.ANE,

and HORSES ARE RELATIVELY INEFFICIENT is con&ined in a

variable labelled HORSES.



Straight text may be set into a variable and left unchanged;

it is still possible to scan for it - remembering, of course, that

the chances of obtaining a match on exact text are fairly slim.

At any given moment a variable may contain either a number

(expressed as an integer) or a string of characters. The former

might be scanned-for in the answer field if we wanted to know if

the student had the right answer to a simple arithmetic problem

he himself had constructed. The latter might be scanned for as a

standard element expected to occur in a great many responses, or

to check a unique item supplied earlier by the student himself.

The entire length of a character variable expanded into a

SCAN operand is treated by DISCUS as a literal. This means that

imbedded commas, or-bars, and ampersands do not serve as logical

operators in the SCAN statement.

In a variable character string consisting of A,B,C the commas

will be passive if the string is used in a SCAN operand.

So in SC Q, "CC",X, where CC is the address of the above

string the operand becomes

Q, A,B,C, X

IV
active passive active

and match will be obtained only if

or

A,B,C (including the commas) or

is present in the answer field.

Further discussion of the SCAN statement must be deferred

until Part III, after the remaining DISCUS OPCODES have been

covered, in order to give the reader a better idea of how they

behave as part of the total system.

59



VARIABTF.S There are no standard constants im-

bedded in DISCUS. For example "pi"

does mot automatically conjure uu 3.1416.

If needed in a particular program it would first have to be sub-

mitted as part of the source. For convenience we would establish

it as a "variable," even though we probably wouldn't plan to make

any changes in it.

A variable can be thought of as a box with a label on i ,

into which we can stuff things, later examining or copying

their contents, adding to them, or emptying them out entirely.

We can be quite sure of the exact contents of the box, provided

we put them there in the original coding and provided we allow

no change to occur during execution.

More frequently, however, we will want them to play a more

dynamic role in on-line operations. At any given moment during

execution, only the computer will know exactly what is in a vari-

able used in this way. Neither our source program nor the object

code listing will show it.

The only way to gain access to a variable, specifically to its

contents, is by referring to its label. In making such references,

the label must always be surrounded by double quotes. Thus

WRITE YOU HAVE COMPLETED "X" PROBLEMS;

will cause display of

YOU HAVE COMPLETED Whatever is con-
PROBLEMS tained in the

variable labelled

-55-



Other uses:

Statement - A "X";

Result - Causes the contents of X to be displayed following
the carat. After the student types his answer
and pushes the "send" button, the contents of "X"
will be entered in the ANSWER field along with his
input.

Statement - SET "X" ,==

Result - Causes the contents of X to be made identical
with the current contents of Y.

Statement - TEST "X".= 2;

Result - Causes the contents of X to be tested to see if
they are equal to 2.

(SET and TEST statements are discussed in detail in the following

pages.)

DEFINE(A) or D(A) To create a DISCUS variable, it must
DEFINE(C) or D(C)

first be defined, either as an arithmetic

variable or as a character variable. And

a label must be assigned to it at that time.

ADDO: DEFINE(A); or ADDO: D(A);

creates a numerical variable with a capacity from zero to over

two billion (to be exact, an IBM/360 full word integer).

This variable will be accessible miy. through its unique la-

bel ADDO.

CHAT: DEFINE(C) 30; or CHAT: D(C) 30;

creates a character variable whose label (or name) is CHAT and

whose maximum length will be 30 characters. We can specify as

few as one (zero would be meaningless,) or as many as 255, but

in any case some number must be stated, so that the compiler

will know how much space to reserve for it.

Neiljiter of these two forms of DEFINE initialize the name variables.

Nothing is put into either box. To do that a SET statement is used.

61
-56-



SET or S SET uses the basic programming device of al-

tering the contents of a variable of a field

by restating its contents with some change,

if a change is desired. Using the examples on the preceding page,

if it were desired to start ADDO off containing 10, we would simply

follow the DEFINE statement with

SET "ADDO" = 10; or S "ADDO"= 10;

(the SET statement does not have to follow directly - there could

be a long list of DEFINEs followed by a long list of SETs.) After

thus "initializing" ADDO, we can change its contents directly

by restating them to be another number or to be the current quan-

tity plus or minus something else, or divided by something, or

multiplied by something, etc., but in any case the quantity to

the right of the equal-sign - which is never omitted - is always

the new value of that variable.

If we desired that CHAT begin its career with the letter Z

as its contents, the statement

SET "CHAT" = 'Z'; or S "CHAT" =

would take care of the matter. Subsequent changes are effected

along the same lines as with arithmetic variables; that is, the

contents are restated either completely or by adding to the

existing contents, as expressed to the right of the omnipresent

equal sign. To eradicate the contents of either type of vari-

able, one encodes nothing at all to the right of the equal-sign

(not zero, which is something different from nothing). Thus

the two variables above could be collapsed by

SET "ADDO" = s and SET "CHAT" = ;

(although they still exist - with null contents).

Note that the address label of a variable referred to in a

SET statement is always enclosed in double quotes. This is

consistent with the general rule that in order to refer to

the contents of a variable through that variable's label, the

label must be enclosed in double quotes.

62
-57-



SET establishes, in a variable, a specified combination of

characters or numbers or other variables. The operation is

always performed on the variable specified to the left of the

equal-sign.

Statements - CUPCAKE: D(A);
MUFFIN: D(A);

SET "CUPCAKE" = 3;
SET "MUFFIN" = 4;
SET "CUPCAKE" = "CUPCAKE" 4- "PlUFITN";

Result - "CUPCAKE" now contains the number 7.
"MUFFIN" still contains the nuMber 4.

Statement - SET "CUPCAKE" = "MUFFIN";

Result - Both "CUPCAKE" and "MUFFIN" contain 4

Statement - SET "MUFFIN" = "MUFFIN" 4. 20 - "CUPCAKE";

Result - "MUFFIN" contains 21. "CUPCAKE" still contains 4.

The arithmetical operators are

add
subtract
multiply
divide

The arithmetic operations are performed sequentially, from

left to right. The results of each separate operation is pro-

gressively rounded off to the lesser integer before going on

to the next cperation (i.e., truncated).

Statement - SET "MUFFIN" = "CUPCAKE" * 7 4. 1 / 33

Result - "MUFFIN" contains 9, not 9.66666 or 9 2/3.

(4 x 7 = 28; 28 + 1 = 29; 29 + 3 = 9 2/3; lesser integer = 9)

-58-6a



The nature of the variable to be set, i.e., the one to the

left of the equal-sign in the SET operand, determines the nature

of the operation to be performed. If it was originally defined

with a D(A), the operation will be arithmetical:

Statement - SET "CUPCAKE" = 365 4- 144;

Result "CUPCAKE" contains 509, not 365144.

If through error or otherwise there is an attempt to add non-

numeric characters to an arithmetic variable, they will cheerfully

be disregarded.

Statement - SET "CUPCAKE" = 365 4- 'DAYS';

Result "CUPCAKE" contains 365 (not 365DAYS or 3650.)



In a character variable - one defined by a D(C) statement -

no arithmetic operation takes place, regardless of whether numbers

or characters are used.

Example

Statements - PIE: D(C) 30;

S IPTE" '4';

S "PIE" = "PIE" ' AND' ' 20' 'BLACKBIRDS';

Result 7 PIE contains

4 AND 20 BLACKBIRDS (not 2)-i AND BLACKBIRDS)

Note that character strings are entered in SET operands as

literals, i.e., surrounded by single quotes, if they are entered

directly, as in the example above. If they are entered indirectly

i.e., by reference to the contents of another labelled variable,

the label specified in the operand is enclosed in double quotes.*

If a blank is needed in order to separate two literals, it

must be specified. Hence ' AND' and 1 20' and ' BLACKBIRDS' above,

not 'AND' and '20' and 'BLACKBIRDS'.

Non-literal blanks mean nothing at all in the operand:

and

S "REN " = "PIE" " 'AND ' " 'BLACKBIRDS ' s

S "PIE" = "PIE" 'AND ' 'BLACKBIEDS';

would have identical results.

If the operand were written

S "PIE" = "PIE" 'AND' '20' 'BLACKBIRDS';

the resultant content of PIE would be

4AND2OBLACKBIRDS.

The SET command provides a means of saving student answers

for later user, but the maneuver must be performed before the next

ANSWER statement is encountered, since every new answer annihilates

whatever preceded it in the ANSWER field.

*This follows the general rule that the contents of a labelled statement
are always referred to by specifying that label. When referring to the
contents of a variable, its name (label) must, in addition, be enclosed
in double quotes.

-60- 65



The contents of the current ANSWER field may be added to the

existing contents of a variable either ahead of or following them,

or inserted between two or more specified elements. In the fol-

lowing example we add the student's last name to a previously-

saved first name:

Statement - W WHAT IS YOUR FIRST NAME?;
A; (student types WILLIAM)
S = MRSIVER";
W THANK YOU. NOW YOUR LAST NAME: PLEASE.;
A; (student types MAKEPEACE)
S "NAME" = "NAME" " "ANSWER";
W WELCOME TO ENGLISH I, "NAME";

Result - (contents of current ANSWER field added on the
right)

WELCONE TO ENGLISH I,
WILLIAM MAKEPEACE

In the following example we add the student's first name to

a previously-saved last name:

Statement - W WHAT IS YOUR LAST NAME?;
A; (student types MAKEPEACE)
S "NAME" = MNSWER";
W THANK YOU. NOW YOUR FIRST NAME, PLEASE.;
A: (student types WILLIAM)
S "NAME" = MNSWER" " "NAME";
W WELCOME TO ENGLISH I, "NAME";

Result - - The same

If the original DEFINE statement for a character variable has

reserved too little space to accommodate the material which one

later tries to SET into it, the SET statement which exceeds the

Assume "NAME" has been previously defined as a character variable.

66



available space does not fail altogether, but manages -'(3 enter as

many characters as possible, starting from the left end of the

input string. The remainder vanish. This could be useful if the en-

coder wanted to throw away all but the first n characters of an

answer, but more commonly the D(C) should specify ample room for

everything expected to go into it.

TEST or T The TEST statement compares two variables with

each other, or a variable with a literal, and

sets a condition code* to positive if "suc-

cessful" according to the terms of the relational operator

(equals = ; greate.e than > ; less than < ; not . They may

be clustered or used aingley.) As with SET, the object of the

comparison is the element to the left of the relational operator.

TEST "A" > "B";

will result in a positive condition if A is in fact greater than B.

The type of comparison is determined by the object variable.

If it is arithmetical, the second variable is dealt with as such,

if at all possible. For example, suppose the following is attempted:

Statements - CUP:
SAUCER:

Result - Positive

D(A);
D(C) 20;

S "CUP" = 103
S "SAUCER" = 'BUTTERFIELD 8';

T "CUP" > "SAUCER";

The program will compare the contents of CUP with the 8 in

SAUCER, and disregard the alphabetical characters and the blank.

If the abject variable is a character variable and the

second variable is arithmetic, the contents of the latter will

be dealt with as a character string.

*The use of condition codes is explained in THE DECISION PROCESS,
p. 67.

-62-
67



Statements - X: D(A);
Y: D(C) 20;

S "X" = 456
S "Y" = '45';

"Y" '6';

TEST "11"; will succeed.

If both variables are dharacter variables, then the

smaller of the two is padded with blanks on the right, and a

dharacter-by-character comparison takes place.

Examples

(Assume "Q" is a numerical variable containing 4R u

"S" " " character 'GRAVY')
6

TEST "Q" = "R"; will fail, because 4 is not equal numerically to 6.

TEST "R" > "6"; will succeed, because GRAVY contains no number
greater than 6 (in fact, no nutber at all.)

TEST "S" -1> = "Q"; will succeed, because GRAVY is neither greati,x
than nor equal to ')1'.

In the following example we test

variable "T" containing 'GRA':

nother character

TEST "S" = "T"; will fail, because 'GRAVY' is not the same as GRA.

A strong similarity exists between TEST and SCAN. SCAN is

really a kind of moving TEST, which sweeps from left to right

across the variable being tested, i.e., the ANSWER field. The

SCAN relational operator - in this analogy - is always = .

68



Both TEST and SCAN result in the setting of a condition code

to indicate success or failure, so that a determination can be

made as to what will happen next in the execution of the program.

To illustrate these operations, two examples are needed:

To verify the exact contents of a variable (TEST)

To ascertain if a character variable contains one or more
specified elements. (SCAN)

Suppose the student is asked to furnish the last four

digits of his social security number in order to use it as a code

number on restart. Either a character variable or a numerical

variable could be used to store these four digits, but it would

be better to use a numerical variable in order to eliminate

"noise". Compare:

SEC: D(A);

(Student types "OK. 5321")

S "SEC" '!ANSWER"3

Result:

SEC contains 5321

because whenever an attempt
is made to put characters
into an arithmetic variable,
they are automatically thrown
away, without affecting the
numerical entry.

SOC: D(C) 20;

(Student types "OK. 5321")

S "SOC" = "ANSWER";

SOC contains OK. 5321

When the student signs in for his next session, the system will

bring his data set out of storage. The program can then ask him

to confirm his identity by again giving the last four digits of his

social security number. Suppose this time he types "5321".

Result:
1

T "ANSWER" = "SEC"; 1 T "ANSWER"
will succeed. 1 will fail.

If SOC had been limited to
four characters by

1 SOC: D(C) 4:
1

it would contain OK.13



and still fail. One could
check SOC immediately after
the orYginal input to see if
it did in fact contain a four-
digit number, but the routine
for this is fairly tricky
and (machine) time consuming.

On the other hand

it would be a good idea to check
SEC immediately after the origi-
nal input to see if it contained
a four-digit number, as follows:

T "SEC" > 9999;
M;
W JOST FOUR DIGITS, PLEASE.;

. J (label of ANSWER statement);
E; *
T "SEC" = 4 1000;
W FOUR DIGITS, PLEASE.;**
J (label of ANSWER statement);
E;

In this example suppose we have been stuffing words from

successive answers into a character variable defined as

CITIES: D(C) 250;

and we would like the program to be able to ascertain - at some

time during execution - if the variable contained either MEMPHIS

CHATTANOOGA. Since TEST tests for all or nothing at all, !,t

won't work here. But we can use SCAN for the purpose:

(Assume we have another character variable called "TEMP" lying

around, which we can use temporarily tc store the current con-

tents of the ANSWER field while we use the ANSWER field for

SCANning something else.)

*-2se of these opccdes is explained in THE DECISION PROCEE" ,
pag- 67.

4646_ :mealy, one or =re additional tests would be needed here
to cleck for leading zeros, e.g., to validate a four-digit
numbe2 such as 0043.

70
4654



S "TEMP" = "ANSWER";
S ''ANSWER" = "CITIES";
SC MEMPHIS, ' CHAT' 'Gt4 ';

F;*
W YOU HAVEN"T MENTIONED EITHER MEMPHIS

OR CHATTANOOGA.;
S "ANSWER" = "TEMP";
E;

Or, turning the procedure around in order to detect repetitions:

TENN: A;
Sc MEMPHIS, ' CHAT' 'GA ';

M;*
S "TEMP" "ANSWER";

"ANSWER" = "CITIES";
SC MEMPHIS, ' CHAT' 'GA ';

M;*
W YOU ALREADY MENTIONED "TEMP";
J TENN;
E;*
W CORRECT.;
S "CITIES" = "CITIES" "TEMP".;
S ''2INSWER" =

E;*

etc.

There is no need to restore "ANSWER" at this point,
because the next input will clear it.

*Use of these opcodes is explained in TEE DECISION PROCEM,
page 67.

**Actually, there is no need to restore "ANSWER" at this
7,r,Jnt, because the next input from the student will clear Lit,

-66--

71



THE DECISION PROCESS In DISCUS, the decision process can

lead to a number of actions such as

"jumping" to another location in the program and resuming
execution at that point;

displaying the contents of a variable;

changing the contents of a variable;

"using" a section of code located at some other part of
the program;

displaying a string of text;

causing the DISCUS system to await student input;

invoking author mode (discussed on pages 137-140);

automatically terminating execution;

or simply passing execution to the next statement in sequence.

To illustrate, suppose SCORE represents an arithmetic variable which

the course author wishes to increment every time the student answers

a question correctly. Then let us imagine a successful match on the

following:

SC BATS;

As a result, we want to process the following statement:

SET "SCORE" = "SCORE" + 1;

However, before the program encounters the SET statement, we will

want to insert a proviso that it be executed only if a match in fact

did occur; we don't want the SET statement to be exeauted

otherwise. To provide for this selective treatment, a new DISCUS

statement is used, its opcode being MATCH, or M. It needs no label

or operand. It simply says to the computer, "If the current condition

code - as set by the most recently executed TEST or SCAN operation -

is positive, let the next operation take place. Otherwise, skip it."

So the sequence would be encoded:
SCAN_BATS;
MATCH;
SET "SCORE" = "SCORE" + 1;

The same kind of arrangement can govern other actions:

TEST "SCORE" 8;
MATCH;
WRITE YOU ARE DOING VERY WELL. YOUR CURRENT

SCORE IS "SCORE".;

72
-67-



The program is not limited to doing only one thing per test or

match:

SCAN HELEN OF TROY;
MATCH:
SET "SCORE" = "SCORE" 4- 1;
SET "TROJAN" = "ANSWER";

We can now close off this little routine and then do something

about the failures. An END statement - again consisting solely

of the opcode - is used:

END; ( or E; )

This can be followed by an action which will always take place if

there has been no match, in effect saying to the computer, "If the

current condition code is not positive, let the following operation

take place:"

FAIL;
WRITE NO. IT WAS HELEN OF TROY;
SET "SCORE" = "SCORE" - 1;
JUMP (to some other label address),
END;

MATCH AND FAIL One can lindt the number of times a given
COUNTERS

MATCH or FAIL statement will operate during

processing of the section of code wherein

it is located, by adding a blank, followed by a limiting numeric

expression, to the MATCH or FAIL opcode. Actually, this limiting

value is part of the operand of the MATCH or FAIL _Latement.

MATCH 1; or M 1; will be. processed no more them
su=essed, along

v1th ail statements that depend
-on it.

FAIL 2; or F 2; vial be processed no more than
twice, then s;.,:opressed, along
v.:1:th all theTstatements that
tepend tan it.

The way in which this feature may be explcxtted-w= be demon-

strated after we have consddered the decisioL process. For

direct reference, see page 82 .



JUMP or J JUMP is fairly self-evident. A JUMP state-

ment transfers control unconditionally to

the opcode associated with a label that has

been specified in the operand of the JUMP statement. ThuS JUMP RUNCIBLE;

will cause processing to switch to that part of the program where a state-

ment labelled RUNCIBIR is to be found, and to resume sequential process-

ing at that point. Note that the destination-label is not in quotes.

(ONLY the labels of variables should be in double quotes when they are

referred to in the operand of a statement.)

The JUMP statement itself may, of course, be labelled, e.g.,

SPOON: JUMP RUNCIBLE; (If at the destination we were to find

RUNCIBLE: JUMP SPOON;, an infinite loop would result. DISCUS

squelches infinite loops after a large fixed number of cycles.)

JUMP is arbitrarily suppressed when it would, if executed, vio-

late condition code levels in a block structure. This will be explained

after we consider the decision process.

RECAPITULATION Thus far we have discussed a number of

OPCODES and the

govern:

statements which they

WRITE or Tol (p.22 )
WRITE(NF) or W(NF) (P-30 )
WRITE(ND) or W(ND) (P. 31 )
ANSWER or A (p. 3)4 )

ANSWER(NF) or A(NF) (P. 39 )
SCAN or S (p. 40 )
DEFINE(A) or D(A) (p.56 )
DEFINE(C) or D(c)) (p.56 )
SET or S (p57 )
TF,ST or T (p.67 )
JUMP or J (above)

It has been stated that SCAN and_TP,ST govern the decision process,

and in demonstrating this we have briefly touched upon four addi-

tional OPCODES:

MATCH or M (p.68 )
FAIL or F (p.68 )
END or E (p.68 )

The intricacies of MATCH, FALL, and END can be properly

understood only after a general discussion of the "block structure,n

which follows.



THE BLOCK In order to appreciate vhat a block
STRUCTURE

structure in CAI can do for us, it is

necessary to review the factors which

have led to its development.

CAI progrpmq and the "language" systems in which they are

implemented can be described generally along the following lines:

Step 1
Step 2
Step 3
Step 4

Step 5

A chunk of instructional text is displayed.
A question is displayed
The student answers the question
The answer is checked against pre-specified
strings in order to determine
a. if it is "correct"
b. if it is "incorrect"
C. if it cannot be recognized as either
Program reactions unique to 4a, 4b, and 4c are
arranged for each case, such as

the display of text which purports to
comment on the answer

the display of text which suggests or
states the answer sought

the incrementing of a score variable
jumping to the next Chunk of instructional

text
jumping to anoth part nf thc 7,, gram.

The ease 1,iith whicLI a CAI mechanism can be described along

these lines can lead to its bedng oversold on precisely those

points where it is often weakest: perceptiveness (Step )4) and

versatility (Step 5.) EffortE to make CAI programming as simple

as possible can lead to routines that work in only one way, where-

as the intellectual aspects of a unit of dialogue may call for

elaborate options....at least if the idea of dialogue is to be

sustained at all. Otherwise it is a little like trying to paint

a picture without being allowed to mix the colors.

.The situation is typified in connection with the program re-

actions listed in Step 5, above. A vexy simple CAI language is

limited to working in one or the other of two basic condition-code

settings, and is governed through a whole series of operations in

a given frame by that one setting. Such frames tend to be sequence-

bound, that is, reactions to matches mmst - both in the source

coding and in the object module - precede the reactions to non-

matches. There are usually ways to program around these constraints,

-71:75



but tLis sort of effort is not a happy investment.

DISCUS reduces opcodes to their simplest terms, each designed

to do one thing and to do that one thing invariably - regardless

of condition code setting. Then it provides two special opcodes

whose sole task is to act as gates - one of them opening only

if the condition code which governs it has been set to indicate

a "success," the other only if the condition code which governs

it has been set to indicate "failure." These are the MATCH and

FAIL opcodes.*

Instead of a command meaning "WRITE IF A MATCH HAS BEEN MADE"

we use the command WRITE or W, meaning "WRITE IF YOU GET A CHANCE",

and ahead of it place a"MATCH statement which will bar execution of

the WRITE unless the condition code setting at the moment indicates

"success." *

In the same way, instead of a command saying "WRITE THIS IF NO

MATCH HAS BEEN MADE," we again use WRITE, but precede it with a FAIL

statement to 'event e:N'_cution if the condition code is set to other

'than "fail."

This may be done across a range of elements, each of which is

to be checked. Or it may be done on a contingent basis, i.e.,

Block level
of nesting

1
2
3

4
5
6
7
8
9
10
11
12
13

(to maximum
dept of 255)

Check for A
If A is true -LIn-sck for B, otherwise pass to point Z.

B
II

II

" E
u F

" G "
H

II

11 II

K

II 'I II C
II II II II

II ' I
" D,

u fI ff ff

If 71
" E,

vi vy II II

It II II F,
vl ti II

II 1I1
If ff ff

IF -11 II II II
" H,

11 II " II II II
I ,

11 11
" IC ,

II II II

11 Il II II II
" L,

11 II /I II If ft

Q.

0.

*Professional programmers may Object to the terminology, but fax

purposes of this Manual we eauate the words "success" = MATCH =

"positive" ; "failure" --= TAIL = "negative".

TD



A condition code could be represented with a small square of

cardboard to which a awinging arrow had been attached in such a

way that it would point to either one of two possible conditions,

success or failure:

Success Failure

or

Success Failure

Now let us require the computer to remember how the arrow pointed

a moment ago, even though the current setting may have changed.

This is certainly storable information, and we want to be able to

retrieve it in reverse sequence. It is as if we were to stuff a

whole series of remembered settings into a tube, and retrieve them

according to the order in which they were stored away:

The setting
of the moment

The last pre-
vious setting

The first pre-
vious setting

1 /
6

Along with each setting, its storage sequence number is noted.

This nuMber indicates the level or that particular setting. By

letting the level determine whether or not a MATCH or FAIL will

even be considered, a vastly expanded set of options is made

available. This is the idea of block structure. It gives

DISCUS a 2-dimensional aspect rather than one which is simply

linear.

Every test carried out, whether it be dictated by a SCAN

opcode or a TEST opcode, results in a condition-code setting.

Action which follows (e.g., WRITE, SET, JUMP, etc.) may take place

FolV.4
g

-72-



immediately, or it may be deferred until after one or more addi-

tional tests in the nest are performed, but in any case it can

take place only at the prescribed level preserved by the MATCH

(or FAIL) which sanctioned it.

How does one emerge from a deep level of operation? Simply

through use of the END (or E) opcode. We pull the remembered

settings out of the tube, as it were, and throw them away one by

one, with an END statement for each preceding MATCH or FAIL state-

ment in the nest. Sooner or later, back at Level 1, the total

number of END statements in the text must equal the sum of MATCH

and FAIL statements.

The following is an executable sequence*

SCAN;
MATCH; 11

TEST; j
MATCH;

TEST; -2

MATCH;

SET;
SCAN;
MATCH;

WRITE;

END;

END;

END;

END;

Total MATCH + FAIL = 4
Total END = 4

*As a convention for listing blocked
indentations resembling those employed
emphasized that they have no operative
however, but are intended only to help
structure.

-73-

Level 1

Level 2

Level 3

Level 4

Level 5

Level 4

Level 3

Level 2

Level 1

coding, we sometimes use
in FOIL. It should be
significance in DISCUS coding,
the reader visualize the block



It is possible to jump out of a series of nested blocks at

any point.

SCAN; 3
MATCH;

SET;
SCAN;
MATCH3

TEST; 3,
MATCH;

Level 1

Level 2

Level 3

JUMP (to some labelled location ); Level 4

END; Level 3

END;
JUMP (to some other labelled location); Level 2

END; Level 1

The fact that execution in some cases never reaches the END state-

ments at the far side of the block structure does not change the

coding requirement: the END statements must always be there, and

they must always equal in number the total number of MATCHes and

FAILs used in the block. Thus in

MATCH;

JUMP (to label address specified in operand);

END;

the END is indispensable.

While there is no restriction against jumping out of a nested

block to a location encoded in such- a way that it would be at a

different level, care must be taken that the net effect is not to

try to reach a level of less than 1. The total nuMber of END state-

ments encountered must not exceed the sum of the number of MATCH

and FAIL statements passed-through, since going below level 1.

The current state of the condition code, as to whether it is

set at success or failure, controls entry into a MATCH or FAIL

block - either within the same nest or in another nest which has

been JUMPed-to. When a block is successfully entered, the condi-

tion code that enabled the entry is preserved and a new level of

'79
-74-



condition code is brought into use. If no new TEST or SCAN is

executed on this new level, the condition code as previously set

is used. The next END statement in sequence brings the condition

code to the next higher level in use, after saving the current

code.

Example: (explanation below)

W NAME THE THREE GRACES.;

A;

SC AGLAIA;

M;

(i) W AGLAIA WAS FOUND;

(E) SC THALIA;

M;0
W THALIA WAS FOUND.;

SC EUPHROSYNE;

M;

W EUPHROSYNE WAS FOUND.;

J XX;

F;
E;

W WE ARE NOT SURE ABOUT EUPHROSYNE, BUT THALIA IS
DEFINITELY MISSING.;

Explanation (Assume student answers "Aglaia, Clio, and Minerva.")

Statement looks for AGLAIA in the answer field, and since

AGLAIA is found, the MATCH block starting at statement is

ontered and the message at statement (5) is written on the

screen. Since the scan for THALIA fails, the MATCH block

starting at statement is not entered, and execution con-

tinues at statement (]) , t' 'qich corresponds to the

termination of the MATCH block _te ing at (I) . The sentence

in the operand field of statement is then displayed.

Thus each MATCH or FAIL block is terminated with a corres-

ponding END, and, if the block is not entered, all the contents

of that block are skipped and execution proceeds to the corres-

ponding END. 80
-15-



When a block is not entered because of condition codes not

being favorable, all the nested statements within the by-passed

block are ignored. Thus if a block on level 5 is encountered, but

not entered because the condition code setting of the moment is

failure while entry is contingent on match, or vice versa, and that

block contains nested blocks at levels 6, 7, and 8, execution

crosses over to level 5 beyond them, i.e., to the corresponding END

statement.

81
-76-



BLOCK or B There is one more OPCODE to be mentioned

in connection with the DISCUS block struc-

ture, one of fairly recent development.

The necessity for this new opcode - BLOCK - became evident only

after finding that we needed a simple way of setting nested blocks

apart as subroutines without too much concern as t.o where they

occurred in the execution stream.

BLOCK simply stands im place of either MATCH or FAIL opcos

when the current condition code setting is imma.-zeri, Eand aU. tEat

is desired is to bracket a section of code. (Am e..411p=r-e is --_-ren

on page 78.)

The rule about END statements can now be r--skate_ THE SUM

OF ALL END STATEMENTS IN A BLOCK MUST EQUAL THE :7A LL MATC_LL,

FAIL, AND BLOCK STATEMENTS.

USE or U A USE statement causes one _ more loglical

instructions locatPd elsere in the -pro-

gram t-) be executed as _if they were actu-

ally listed at the location of the USF. The operamd of a USE

statement is always the single statement label address indicating the

location of the instruction(s) to be executed. ilhe label is not

enclosed in quotes.

The scope of the USE depends on the nature af the statement

bearing the access label specified in the USE operamd

a. If it is a FRAME statement (e.g., AAA:2 '...11v; or AAA:FR;)*
then the entire frame is executed.

b. If it is a MATCH, FAIL, or BLOCK stateme-r7-, then all
commands at or below the entry point level-will be
executed, until the end of the block is reached.

c. All other statements are executed as indivddual entdties.

As a corollary, execution returns to the point immediately after the

USE statement when execution

*Discussed in next section.

82



a. The next FRAME statement, if a FRAME has been USEL

b. The first END statement encountered at the level a=
which the block was entered.

c. At the delimiter (;) of any other statement UEFR other ta
-FRAME, MATCH, FAIL or BLOCK.

There will be numerous instances wherein the coder w1i.zt

o use USE for bookkeeping operations. These are discu.ssed 1.- -":the

:action on useful eUbrUlles in Part

The usefulness of -JSE can be exemplified briefly as fol

a.. Suppose the programmer has written a particular ro7:

iLvitig signoff, such as "You have been working for "TM"'" ". -es

n and your scoring rate is . Do .1-Du want to stop

He =ht wan:: to be able to call up this routine at several c-'-'"en-er

prJ_iats in =e program, and he can do so by delimiting it wf_nn a

B- ' 'K st-LeTn=nt, the first of which he could label TIRED. -Ee

then implant the followfnE statement at several points in hi_

USE TIRED;

with the same effect as if he had repeated the entire routine

each location.

b. Suppose the programmer has written a testing routine tc

determine the "scoring rate" and to govern use of the frame

described above, and for this purpose uses a block such as the

following:

SCORCHK: B;

S "STALLY" = "TTALLY" / "UTALLY";

T "STALLY > 7;

M;

U TIRED;

E;

E;

He needn't repeat this every time he wants to employ it in the

-program. USE SCORCHK; will suffice.

c. Suppose the programmer has prepared a lengthy WRILP...

statement (such as a -arefully formatted list of categc:i

83
-78-



He can effectively insert this single statement anywhere in

his program simply by referring to its label in the operand

of a TSP. etatement; e.g. USE LIST22. UNLESS THE STATEMENT

USED is a NATCH, FAIL, BLOCK, or FRAME statement, processing

reverts Immedfately on reaching the first delimiting semicolon

after the locetion cited in the USE operand.

Exammles given following explanation of FRAME (next

sect_on) cJT--manstrate some additional applications of USE.

FRAEE or EE A FRAME statement marks the beginning

of a segment of code. Also the word

"frame" can mean the entire list of in-

struntion3 (statements) beginning with a FRAME statement and

ending ea the next FRAME statement. For clarity we will indicate

the or n tris second sense by printing it always in lower

case.
FRAME;

Other
Statements

FRAME;

FRAME statements serve as reference point for entry or re-

entry fnto a particular sequence of code. They do very little

proceseing, as such, and contain no operand. They may, however,

be labell-9 and through such a label reached by means of a JUMP

or USE from some other part of the program. When accessed in this

cr any other way they simply pass execution to the next statement

in sequence.

The DISCUS compiler will cause a line of hyphens to be printed

out in th- Object listing immediately ahead of the FRAME statement.

(See exam: le on page 24.) This is helpful in scanning and checking

the program after it has been compiled.

A typical frame begins with a display of text followed by a

directiv--: that will elicit a response from the student.

-79-

_ 84



Next follows anANSWER statement, then one or :more scanning

and testing operations ft the:1r train of otingent actions

display of additional text and omment, _Bcoring, t-ranching

to other routines, retr-ming to the AUSKIL:- statemamt, etc.

After all the ope7racions specified Ln connection with

that particular ANSWET statement have been encoded, and the

coder is ready to gc on to the next inst7uctional step, he

mill probably decide to atart a new 'Vram (with a FBAME

statement).

The frame - as a unit of instruction is a teaching con-

cept derived from earler -work in the des:Jgn of mrogrammed

textbooks and teaching machines- Blocks .7f_f L.L,- with multi]pTle

choices appended, were actually enclosed ----ma ---tF-Igular

"frame," in the former. Below this figure apipeared directions

as to which page to turn to, depending on the stmdent's choice

of answer. Teaching machines concealed the correct answers

mechanically until the student pushed a slide mtich carried

his own answer irretrievably into the machine's insides.

Although computer-assisted Instruction frees us from the

constraints of the programmed textbook and its- mechanical

counterpart, it is only natural that an author/instructor shodid

at first favor frame-like steps in developing his material.

Later, the fact that he can use udeces of frames mhenever he

wishes, can return to mtole families '. of frames at will, or

jump from the middle of one frame to the beginning or middle

of another, in due course will persue him to structure his

material more f1exibITT. After all, the frame es such does not

govern the execution of the program; it is jn---=,t one way of seg-

menting the flow of

A frame can be extremely short and im11 or so long alryd

complicated that it invmlves hundreds of stalements. If a

definition is needed, ane might say that a frane is a sequence

of statements that contains one and only-one ,NEWER statement.

This takes care of the kind of frame that makes no didactic

pronouncement, but simmly gives the student a caoance to respont

-80-

85



to sonettanz pnsed in a ra.,..sdc ion WRI.= in another frame (or in
sec--ral otter .e.mes). It t,.L so covers the most fntricate
sc an = etructures w- follow the SWER statement
bef=e t±..e. next ANSWER sta ent occ7ars in the coding sequence.

T-niL. definition doe mt specif7 FRA1v2 as a delimiter,
becaase ae RI-121....INIE STATEMENT IS P=MARILY A..LDCATOR. It has an
imtzztan-: f-:=.-ction in certain operations, but its presence or
absence :s not- directly mar,--'-f-stei. To explain:

L7RAIJE, be thought of -as the concierge of a small hotel,
a h_Jt..el -,:t..-de-open windows, all on -the g:~ound floor. One

can enter -1-7-t- way of a window ,- ld leave the se way, and the
conr'erge will never be the w.:-Iser. If, how.F--7-er, one goes in
by the front .1nor, past the ncierge, th-: 'Latter unobtrusively
makes a note of it and inme-±:a.s.- no-1.7ifs _Headquarters.

Now let us say that the -±:i4alest dizapr-ars - that is, the
student signs off for the day. The record of his last known
whereabouts s ik-ent on file, .and when he sag= in again, Head-
auarters i1Lsee to it that tnat is where ..-,-materializes
again.

Not no 1---labor the ansl--,sn- further, le t. nEs say that we
use a nniJiater system, and everz-- time a FRAMEI.-r.,tatement is
_passed through, that 1ocat--: -.Ion i rec-c-rded in a 7.!sointer and
the rensra of the previe,vls sddress in erased. The block level
apTly-img to the current or..xe-r-_.-,J-'tion is also rei:ed. Accordingly,

pro-tgrPrn knnws ber tc :resime exenution it has been
intem-rtunted and at W nadion cmde level_ This is the
FF,S= --ITA=TY mentfoned.. earlier. .

fuLf1:11 still:.-miziother function itZ3.. coimection with
TTOII -Whenever a lf-RAME statement is exe-
cuted iL E, FAIL and 7,-....1_,.70CK counters .a.7-,e set -to zero.

86
-81-



N-pw t :at the reader has leem introduced to block struc-

ture, e asm mcre readily ampraciate the utility of the MATCH

and TATI mamnte-s of which we snoke earlier (page68). Since

these 7:ountrs also work IsTith RTOCK statements, we can refer

to ther as YAT:H-FAIL-BLOCK or "MHB' counters.

In the 7.cl-___owing example, the smatements which are itali-

cized illusmral,e the operation of this device:

RUBENS: W WHAT TWO COLORS COMB= TO MAKE ORANGE?;

SC REL Pr: YELLOW;

A;

W C237o701;

J =DU";
E;

SC TEM;

141.s

W RED LS CORRECT.; Provided the student doesn't get
both right in the first scan,
processing will test first for "red"
im the ..aswer, and respond with
this, one time only.

S "TAILY" = "TALLY" + 24

7i. "TALLY:" = 2;

W(NM1 HED AND YELLOW.= - (etc.);

J TT=EANi;

E;

J HrInENE4

E;

W YOU ALREADY SAID "REP..".sThe next time around, and
t'tereafir.er, if the student answers

-5his MATCH block will be
usa-1

J RUBENS;

E;

.SC YELT,OW

-82-

(example continued on next page.)



M 1.;

W YELLOW IS CORRECT.; Will be processed once only.

S "TALLY" = "TALL:7" 1;

T 'LALLY" = 2;

M;

KND) RED. AND YELLOW ARE. . . (etc. );

J TITIAN;

JV

.E;

RUBENS;

E;

Al; This MATCH will operate the second
time, and thereafter, after a
response of "yellow."

W YOU ALREADY SAID "YELLOW";

J RUBEN'S;

E;

F 2; Response for the first two FAILS

W NO, "ANSWER" 15 INCORRECT. TRY ANOTHER COMBINATION.;

E.;

F1; Response for the third FAIL.

W SORRY S777 E WRONG. BOTH HAPPEN TO BE
SO-CAL&777? "WARM" COLORS. TRY ONCE
MORE.;

J RUBENE.;

E; Responce for fourth FAIL.

W YOU SHOUID HAVE ANSWERED '"RED AND YELLOW."';

TITIAN: WHAT ARE THE "PRIMARY"' COLORS?;

etc.

The numeric expression used as an MFB counter doesn't have

to be a simple integer; it can be an expression such as

"N" 4 - "Y". In mnAo. a case the system makes the necessary

retrLevals and/or ccmputations to establish the actual nuMber

oT tfmes the M or F or B statement will be allowed to operate.



NOTE or N Oftentimes the programmer will want

to make a permanent or semi-permanent

memorandum of his reasons for coding

a sequence in a particular way, or to indicate a transition,

or to relate sections of code to topical headings in the author/

instructor's outline. He wants these memoranda to reappear

automatically in the program listing whenever it is recompiled,

without, however, affecting execution in any way.

The NOTE statement does this. It is completely inert as

far as the program is concerned, and its only function is to

Preserve and reiterate, in the OBJECT listings, whatever the

programmer has placed in its operand.

Statement N STARTING DRILL AND PRACTICE IN PARSING;

Result N STARTING DRILL AND PRACTICE IN PARSING;
is printed in the OBJECT listing, in its
proper location, with a statement nuniber
assigned.

NOTE is seldoni labelled, because there is not much point

in accessing a statement that does nothing. Occasionally,

however, there arises a need to assign two labels to a single

statement. Since current implementation does not permit this,

one of the labels can be assigned to a NOTE statement, which

is placed immediately ahead of the statement in question. On

execution, if that label is JUMPed to, processing simply goes

on to the next statement.

Statements

J REV IEW37;

J DIOTUM37;

REVIEW37: N;
DICTUM37: W THE FOLLOWING TRENDS IN THE TRANS-._

PORTATION INDUSTRY...etc...;



Result (of either JUMP)

iTHE FOLLOWING TRENDS IN THE
TRANSPORTATION INDUSTRY...
etc...

NOTE can also be used temporarily to suppress a statement

(together with all statements which depend on it). This is

sometimes desirable when the programmer wishes to enter certain

items in the program but to keep them in abeyance as far as

execution is concerned. He can imbed this material in his

source deck and see it printed out in the OBJECT listing, and

yet be sure it won't be executed, simply by adding NOTE or N

ahead of the statement to be suppressed (but following its

label, if any). This has the effect of turning the opcode of

that statement into operand material, which will be (because of

the N opcode) completely disregarded during execution.

When the programmer is ready to activate the statement in a

subsequent compilation, he simply removes the N opcode.

The device is made the more convenient if statements are

always punched with a few extra columns preceding the (normal)

opcode, in addition to those needed for labels.

Statement (as normally punched)

comma= S 'WNW is 'DUMMY +I;

(execution suppressed)

CA1C4a2 1 S "VUMMY" * "DUMMY°
0



PART III - PROGRAMMING IN DISCUS

IDENTIFYING THE The functions performed by the several
PROGRAMMER DISCUS statements as described in PART II

need to be thought of as tools by means of

which the craftsman may be able to shape satisfactory computer-assisted

dialogue. Like any precision tools, they need to be used deftly, and

in a number of different combinations, inorder to achieve a desired result.

At this point we should pause to consider who will be using these

tools. Will he be a professional programmer, one already trained in

some standard computer language, perhaps several? Will he undertake

DISCUS programming simPly as an extension of his repertoire?

Or will he, instead, be a person whose main commitment is to

education or training in an academic, commercial, or industrial

environment? If so, will the production of course materials for

direct implementation be his princfpal concern, or will he be

oriented more toward research and development in the educational

and training processes themselves?

Will he be a specialist in some subject field, one who works

in an educational environment, perhaps, but whose time and energies

are largely preoccupied by the demands of his specialty? might

such a person take up CAI programming in order to promulgate his

specialty more effectively?

Might the DISCUS user be one whose interests and duties combine

elements of all the foregoing in a pattern that is unique to him alone?

In trying to identify and characterize the CAI programmer in

standard terms, we find that no one set of qualities, interests,

and objectives suffices. Between the extremes of the. systems

programmer, on the one hand, and the preoccupied scholar, on the

other, there will be many who will find CAI programming a useful

adjunct to their other talents. In addition there will be some

who will take it up as their txclusive activity. We expect that

the latter will cluster largely in the educational specialist sector,

but this may not always hold true.



It is difficult to conceive of an individual at either extreme

who would be both willing and able to produce, unaided, instruc-

tional material of suitable quality. In "The CAI Author/Instructor",

Meredith discusses the effect on CAI of the essential dichotomy

between educational substance and educational tools. He postulates

a role for the subject specialist wherein that individual need not

master the technicalities of computer programming. By implication

the CAI "programmer/instructor" would be the other half of a pair

of specialists sharing a single educational task.

Whether one accepts this approach, or adheres to the belief

that one should merge all functions of the author/instructor and

of the programmer/instructor in a single person, the functions

themselves can he considered separately, and in the following pages

we speak of them in this sense - as functions. We personify them

separately, for the sake of clarity and convenience, but not to

imply that only a team approach will work. The reader can decide

for himself whether he wants to be both members of the team. Mani-

festly this Manual is limited to dealing with the programming

function excevt insofar as it is necessary to speak of its relation-

ship to the authorship function.

CAI AS A PRODUCT We have spoken of DISCUS statements as

precision tools which the CAI programmer

uses to shape satisfactory computer-

assisted dialog. The product, in his case is nothing as graphic

and self-evident as a watch or a painting or even a piece of music.

The programmer deals with ideas and processes in a heuristic way;

the results are not immediately evident. His product is only a

plan of idea-transitions; it is protean and probablistic, a plan

of happenings many of which may never happen.

SATISFACTORY COM- What is meant by "satisfactory computer-
PUTER ASSISTED
DIALOG assisted dialog?" Satisfactory to whom?

In a CAI context, we feel that both

the student and the author/instructor need to feel that they are



well served by the computer as a means of communication between

them, bearing in mind that disjunctures of time and place might

otherwise prevent communication altogether. The author/instructor

needs to be reassured that his statements will not - in the con-

volutions of the dialog - somehow be turned topsy-turvy. The

student needs to be able to convince himself that somewhere a

human, however remote, is attempting to reach him as an individual.

Both need to be willing to forego the exquisite controls and bal-

ances which govern the flow of live conversation, and which on

reflection they would be unwilling to endow a machine with in

any case.

Computer-assisted dialog is "directed dialog," with almost

all of the direction in the hands of the author/instructor and the

programer/instructor. This in itself is not a bad thing: students

are used to being lectured at, not with, and even seminars have a

topic of some kind, and a leader. In highly interactive CAI the

sharing of some measure of direction is entirely feasible, and

eventually - as programs increase in number, versatility, and

general availability, perhaps to the extent of coalescing into

huge learning complexes - much of the supervision of directed dialog

will pass to the person seated at the student console.

PROGRAMMING AS We have purposely omitted the program-
AN EXERCISE IN
ANONYMITY ming function from the above cri-

terion of satisfactory computer-

assisted dialog, because the programming function facilitates,

rather than judges, the final result. He is a communicator, rather

than a communicant. He has the responsibility of determining how

well the author/instructor and the student are served, according

to the system's capabilities as he sees them. He decides not only

whether a certain thing can be done, but also whether it will be

useful enough to either of his patrons to make it worth doing.

There is, after all, a limit to available programming effort.

The time spent in making one frame super-elegant may lead to the

slighting of others, to the detriment of the sequence aS a whole.

On the other hand, it may lead to the discovery of contrivances



which will be useful in a number of frames. Accordingly, when a

programmer devotes many hours to a particular subroutine for a

particular frame, he has, or should have, some expectation of

being able to use it in other frames as well, with adjustments

that will be minor and preferably automatic.

As far as the author/instructor is concerned, the mrogrammer

speaks for the system hardware, offering a mixed collection of

services. These are usually far greater in scope than the

author/instructor who is new to the field will have envisaged or

will be prepared to utilize. It is essential that they not be

dragged in just for the sake of using them as toys. On the other

hand, the author/instructor should be reminded from time to time

that they are there.

As far as the student is concerned, system mechanisms should

be as unobtrusive as possible, in order to permit the level of

communication we seek. Whatever the system conveys to him is

conveyed on behalf of the author/instructor. The programmer,

as part of the system, keeps well out of sight. He avoids imposing

more than an absolute minimum of housekeeping chores on the student.

He busies himself between the two principals, a collaborator of

the one and an observer of the other. He is there, but like the

ne'er-do-well father who shows up unexpectedly at his son's fine

wedding, he shouldn't rush in and shake hands all around.

PREPARATIONS A level of mutual understanding should

join the author/instructor and the pro-

grammer/instructor, so that the former

will have a good grasp of system capabilities and the latter

will have a good grasp of the subject to be taught. Before the

actual writing of a program is begun, a number of parameters

need to be specified, or at least described closely enough so that

collaborators will not find themselves drifting apart later on.

It is best that this be done in writing. No informal under-

standing, however agreeable to both parties, can properly sub-

stitute for written instructions. Even if both functions are undertaken



by a single individual, he should carefully profile his intended

student set, course objectives, subject matter, and strategy - in

advance and in writing. The following checklist may be useful fn

this connection:

Define the course objectives.

What is expected to be the students' median age?
I, academic level?

prevaration
and/or screening?

How is the subject matter conventionally organized
and presented?

What are its boundaries?

What is the nature of adjacent subject matter, and
how permeable are the inter-subject boundaries?

The general pZan of organization. Will the
instruction be sandwiched between lectures or Zabs?

What will be the policy on the handZing of requests
for review. Should review consist of iteration, re-
statement, compression, or a combination of aZZ three?

What wiZZ be the policy on the handZing of requests
beyond the scope or depth of the "involuntary stream."
If voluntary digressions are permitted, where and how
are they to be brought back to the mainstream?

What wiZZ be the policy governing sequencing of topics
or the resumption of topics on "restart" (i.e., when
the student signs back onto the terminal after an
interruption)?

What elements are to be the subject of scoring?

What statisticaZ data need to be accumulated?

CORPUS Next, the author/instructor should

furnish the programmer/instructor

(or the author/instructor/programmer

should furnish himself) with a body of substantive instructional

material (corpus) which - if not covering the entire course - will

at least be complete and well polished as far as it goes:

95



A list of textual statements to be used.

A list of questions or requirements de-
signed to elicit responses from the student.

A list of anticipated responses according
to key words (e.g., a typical response
with key word(s) underlined.)

A list of conditional rejoinders (not
necessarily complete, because not all
reasonable responses can be imagined by
the person who generates the text; the
programmer himself should be able to
suggest additional possibilities.)

This is the heart of the dialog. Its preparation is somewhat more

demanding than would be the writing of an effective, publishable

textbook. It should be as explicit as possible before the pro-

grammer picks up his tools. There will be revisions, of course,

after the author/instructor develops an ear for computer-assisted

dialog. Hopefully some of the initial frames can be implemented

in the system for just this purpose. But without written bases as

points of departure for such revisions, the programmer will find

himself floundering in a morass of "Who said what? Where am I?"

In order for the system to serve both educator and student

satisfactorily, certain favorable conditions must be established

at the terminal:

The student needs to learn to use the equipment as quickly

and with as little fuss as possible. After being told how to

sign on and off and how to send his responses to the computer, he

should - insofar as possible - be freed of the mechanical imper-

atives which tend to intrude between him and the course material.

There appear to be two levels of instruction involved here:

instruction on how to use the terminal, as above, and instruction

on how to formulate input. An example of the former would be the

imparting of the method of backspacing over mistakes, something

the student should be told by pre:-instruction. The latter

416

-92-



represents some inherent constraint or artificiality in tbe.pro-

gram itself, suCh as night prevent input from ben.P. "unders-tood."

To illustrate this, suose we had the following display.

THE "STATUTE 0? FRAUDS" IS PRIMARILY 70NCMED WITH

1. TRAYSACTIONS IN JEWELRY

2. STOCK AND BOND SALES

3. REAL ESTATE TRANSFERS AND TE=qES

4. THE 'USED CAR RACKET'

Suppose that for some reason the system or the CAI language -In

use, or both, imposed one or more of the following rules:

ANSWER ONLY WITH NUNERAIS

ANSWER ONLY WITH NUMERALS OR A SINGLE KEYWORD

ANSWER WITHOUT ANY SPELLING ERRORS

ANSWER WITHOUT REVISING SYNTAX IN ANY WAY

DON'T SUBSTITUTE 'THE FIRST' or 'ONE' for '1', etc.

DON'T USE DOUBLE BLANKS

DON'T ANSWER WITH MORE THAN ONE OF THE CHOICES

DON'T USE MORE THAN 8 CHARACTERS IN YOUR ANSWER

DON'T COMPLAIN OR ASK QUESTIONS

DON'T . . .etc.

How much of this sort of thing should be inflicted on the

student before he has a chance to answer the question? The best

solution is to eliminate the constraint, but there will be times

when the programmer will feel that the likelihood of deviant

response in a particular frame is so slim that it is not worth the

labor of accommodating it. It appears to us that this sort of de-

cision should be reflected in post-instruction. There is no point

in telling the student ANSWER WITH NUMERALS ONLY if that is what

he was going to do anyway. The system intrudes much less if it

corrects and instructs only when an item of student input shows

that c().-cction and instruction is necessary.

97
-93-



The cf:hoLce between ix-e-tnstruction and post.instruction de-

pends on t exigencies each particular frame, but the norms influ-

encing 7nese chnices shc__: I be agreed in advance between the author/

instrucaor and the progrananer. If the latter works in a CAI

languae as agile as DISC-1, the policy can in fact be one which

abjures pre-instruction altogether, or almost altogether. One can,

in other woras, eliminate fran the phrase "directed dialogue"

the connotat.icn of directMg the form in which the student answers

must be couened in order to be processed by the system.

The presentation of instructional material in ways that per-

mit the student-, to take an active part in his own learning pro-

cess is an art in itself. It is not enough to pause every few

sentences to ask a question merely to find out if the student has

read and understood what he has been told; the student should be

enabled to extend or exemplify the concept in some small way.

This means stretching the system to the limit in order to cope

with a very broad range of' responses. When the types of response

elicited by the author/instructor threaten to exceed this limit,

e.g., when the proportion :1-,f unanticipated, or fail-match respon-

ses would be excessively Lgh, he should be so advised.

It is useful to categorize possible student answers along

the following lines as a basis for assessing the performance of

a given set of SCAN specifications:

A
L

(Answer, Legal) A string of student input
of limited length, con-
taining at least one term
relevant to the question
or its context, and in
grammatical order.

A (Answer, Illegal) Any string of student
input not meeting the
above requirement.

A
LP (Answer, Le4al, Perceived Any AT which is pre-

dicted as possible input.



ALPE
(Answ=, Legal, Perceived,
MatctLed.)

ALPF
(Answer, Legal, Perceived,
Failed)

ALU

Any A_ which the author/

instructor chooses to deal

with specifically.

Any ALp which the author

deems so remote or so

inconsequential or so

difficult to deal with

umiquely that it should

be failed.

(Answer, Legal, Unperceived) Any AL not perceived as

a possibility.

(The sum of failed Answers) AI + ALu + AUF

The true of answer which principally occupies our attention

is A__ . It is not necessary that the author or programmer
LeM

have in mind everything that the student might say embodying the

Aum element(s); it is necessary that he select some elements

which are

likely to match with a broad range of responses relevant

to a question,

will match members of semantically similar input, and

will distinguish semantically dissimilar input by failing

to match with it.

The range of ALpm is directly influenced by the form of the

questions which precede them. A question posing a very rigid

requirement (e.g., True-False) reduces the number of Aum to a

F413,

-95-



minimum, bait at the same timEL, it vitiates the conversational mode.

The goal should be to op questions and to give the student as

much freedom in formulatfm hls responses as we can, without

letting match probabilit,7 fall below acceptable levels.

Part of the authcr/f=tructor's task-is to define, or at

least coherently tr,2: describe, the Alp which he wishes to inter-

cept- The SCANs that are to .accomplish this call for close

collelocirative effazt on the part of both the author/instructor

and the programmer, the former contributing most (but not all) of

the lexical strategy, and the latter contributing most (but not all)

of the mechanical tactic.

In the selectinn af a single keyword to be specified In a

SCAN statement, we naturally want to choose one which will, if

present, almost certaimly indicate that the student has expressed

a particular meaning to which we can respond unequivocally. If

there appears to be excessive risk in relying on a single keyword,

i.e., if the word might reasonably be used by the student in a way

different from that to which we want to respond, we try to restrict

it somehow by combining it with one or more additional words.

While this increases the confidence level in respect to the pro-

gram's understanding of that which it intercepts, it decreases the

versatility of that one SCAN parameter.insofar as intercepting var-

iant expressions of the same meaning is concerned.

This effect approaches the absolute when one specifies the

key-string as a literal, ruling out "match" if the student inserts

or omits anything at all (even an extra blank or two) between the

specified elements. Thus

SC TED., WHITE, AND BLUE';

would not intercept

or

or even

red, white, pink and blue

red, white, blue

red, white and blue

Such rigidity may be exactly what is wanted sometimes, of

course, but more commonly literals are used to specify parts of



keywords rather than longer strings, their functiOn being to

afford some latitude in spelling, syntax, etc. Thus

SC ' STOR';

accepts storage, storing, stores, storable, store, etc. (and

stork, stormy, Storting too, but these are remote enough to be

acceptable risks.)

Literals aside, it might be said that for each word specified

in conjunction with a keyword, the likelihood of misinterpretation

decreases very rapidly, whereas the likelihood of missing identical

or nearly identical meanings increases by a similar factor. But

this should not be construed other than as a gross representation of

a whole series of effects and counter-effects tied to the probabilities

of the English language. Input varies in length, and one might ask

to what extent a long input string would be more likely to contain

a given key-string than a short one. Perhaps none at all.

Not all associative words used with keywords carry the same

discriminatory power. In fact, one finds that sometimes the words

which are the most Obviously associative carry no more certitude of

correct interpretation when combined with the keyword than do those

which (syntactically, at least) appear to be more remote yet which

encompass a better range of variance. Thus it is possible to expand

the key-string with elements which will greatly strengthen it,

without entailing loss of versatility in anything like the same ratio.

Fortunately, one need not rely on a single keyword of key-

string to intercept a single meaning: the use of "or-connected"

suboperands in the SCAN statement permits a diverse approach, with

each suboperand attacking the problem from a different angle.

(Presumably the program reaction to any one of a group of "or"-ed

suboperands in a single statement is intended to be the same.

Otherwise, they should be set up in separate SCAN statements and

dealt with uniquely.)

The "and"-connected suboperand is really not much different

from the multiple-word, or key-string, operand discussed above,

the only difference being that its elements will match input of

the same elements in any order. Where

SCAN RED WHITE BLVE;

101
-97-,'



vill match input containing those three words in that order

(e.g., roses are red, snow is white, and violets are blue) it

will not match input containing them in any other order (e.g.,

I have a blue hat with red and white streamers.) But

SCAN RED & WHITE & BLUE; will.

"And"ed suboperands are more rigid than single keywords, but

obviously less rigid than ordered keystrings, because they do

permit inversions and permutations. Since content rather than form

is usually the chief desideratum, this kind of SCAN becomes quite

useful, even if at the time it is chosen neither the author nor the

programmer have in mind all the forms it might intercept.

Another feature of the "and"ed suboperand is that it allows one

to negate any parameter without negating the whole, as happens

in a simple key-string if one assigned-Ito any of its parts.

Statement

Result

SCAN -10SCAR STRAUSS; or SCAN OSCAR -1STRALISS

The "not"-sign negates both Oscar and Strauss.

If we merely wanted to intercept any Strauss other than Oscar, we

would specify

SCAN -7 osrAR & STRAUSS ; or

SCAN STRAUSS & -1 OSCAR;

"And"ed and "or"ed suboperands let us specify SCAN parameters

with great precision without forfeiting the degree of open-ness,

or flexibility, which we require in a given situation. Coupled

with the "not" facility ( ) and the use of stepped or conditional

SCANS we find that we can interpret student input very accurately

indeed.

In the absence of a "not" facility one can accomplish some

of the same effects by erecting screens which scan for unwanted

elements first, before scanning for wanted elements. Using the

OSCAR STRAUSS example, above, one would scan separately for

OSCAR, ahead of the STRAUSS scan, and if the former is found, jump

over the latter.

-98.-
102



SC OSCAR;
M;
J WALTZ;
E;
SC STRAUSS;
M;
W YES.;
J NEXTFR;
E;

WALTZ: SC STRAUSS;
M;
W NO, NOT OSCAR STRAUSS.;
J NEXTFR;
E;

There are two ways in which DISCUS permits us to improve on

this, (A) one using the "not" facility (for the case where we

don't want to make a point of telling the student that Oscar is

wrong), the other (E) using stepped SCANS:

SC-30SCAR & STRAUSS;
M;
W YES.;
J NEXTFR;
E;

SC
M;

STRAUSS;
(diagrammed as0

SC OSCAR; SC (F)

M;
W NO, NOT OSCAR.;
J NEXTFR; SC M (F) E W J
E;
W YES;
J NEXTFR; W J

E;

B represents an extremely effective way of dealing with

faulty answers, because it can cover errors of omission as well as

errors of commission, simply by using a FAIL block instead of a

MATCH block. Suppose we wanted OSCAR STRAUSS:

103
-99-



SC
M;

SC M
STRAUSS LF)_

SC OSCAR SC F (M) E W J
F;

W YOU DIDN'T SPECIFY OSCAR
STRAUSS.

W J

J NEXTFR
E;
W CORRECT':' OSCAR STRAUSS.
J NEXTFR
E;

Block structure moreover permdts one to scan for the same

word more than once in the same frame without the constaint

that the first such SCAN is the only one that will succeed.

As indicated earlier, TEST and SCAN are much alike. Both

govern decisions in block structures, but whereas TEST may be

satisfied according to its terms by a logical relationship

(>, , =, or <) of the whole variable tested, SCAN requires

equality, but only in the part specified. Also while the con-

tents of any variable may be TESTed, only the contents of the

ANSWER variable may be SCANned.

TEST is relied on for most of the housekeeping chores involved

in careful CAI programming. Often such functions can be standard-

ized and tucked away in subroutines, callable by the USE command

wherever a particular service is required. For example, suppose

the author/instructor wanted to invoke review sequences when "X"

reached 10 or "Y" reached 7 or the two together amounted to over

13; both ,"X" and "Y" to be incremented whenever the student made

certain types of errors. The subroutine to accomplish this should

be USEd at the beginning of each frame, which is the logical

breakaway point for any review. (Note that we use a block struc-

ture to USE several statements together.)*

*Assume "X", "Y", and "Z" have been defined as arithmetic
variables, and REVY is the label of a review sequence.

-100-

104



FR;

U REVIEWA;

W (ongoing text);

REVIEWA: B;

T "X" > = 10;

M;

U NOTIFY;

J REVY;

E;

T "Y" > = 7;

M;

U NOTIFY;

J REVY;

E;

ttxt1 nyfl;

T "Z" > = 13;

M;

U NOTIFY;

J REVY;

E;

NOTIFY: W I THINK A SHORT REVIEW WOULD
BE GOOD AT THIS POINT.;

E;

(Observe that the statement labelled NOTIFY never executes sequen-

tially, because it follaw.s a JUMP at the same level. An alternate

treatment would be to substitute it for one of the U NOTIFY

statements.)



Suppose the author wanted to prevent repeating exactly the

same review sequence (REVY, in the example) in the case of a

student who continues to have difficulty. One solution would be

to furnish a control along the following lines: (Added state-

ments are indicated by arrows).*

REVIEWB: B;

T "X" = 10;

M;

U NOTIFY;

T "REVYX" = 1;

M;

J REVY2;

E;

S "REVYX"= 1;

J REVY;

E;

T "X" = 7;

M;

U NOTIFY;

T "REVYX" = 1;

M;

J REVY2;

E;

S "REVYX" = 1;

J REVY;

E;

s Hyl "X" + "Y";

T "Z" > = 13;

U NOTIFY;

T "REVYX" = 1;

M;

*Assume "X", "Y", and "Z" and "REVYX" have been defined as
arithmetic variables.
(REVY and REVY2 are labels of the two review sequences.)

-102 -.

. 106



J REVY2;

E;

S "REVYX" = 1;

J REVY;

NOTIFY: W I THINK A SHORT REVIEW WOULD
BE GOOD AT THIS POINT.;

E;

E;

Tt should immediately be apparent that the added statements

comprise three identical groups, which might be written as a

separate subroutine (or 'sub-subroutines if you like) and USEd

when needed:

REVYZ: B;

T "REVYX" = 1;

M;

J REVY2;
E;

S "REVYX" = 1;

E;

FR;

U REVIEWA;

W (ongoing text);

REVIEWA: B;

T "X > = 10;

M;

U NOTIFY;

U REVYZ;

J REVY;

E;

T "y>= 7;
14;

U NOTIFY:

U REVYZ;

J REVY;

USEable subroutine
block



NOTIFY :

E ;

S "Z" = "X" +

T "Z" > = 13;

M;

U NOTIFY ;

U REVYZ ;

J BEVY ;

W I THINK A SHORT REVIEW WOULD BE
GOOD AT THIS POINT ;

E ;

E;

_104_
108



The block of seven statements can be stored away anywhere

in the program where it will be protected akainst accidental exe-

cution, e.g., after a JUMP. Another appropriate location is any

one of the points at which the coder wants to provide for its

use, where it will naturally take the place of the USE command,

at the same time it continues to be USEable from other points

in the program.

In the above, we have reduced the fifteen statements required

in the original augmentation (page 91) to ten, and have provided

a subroutine module that will possibly be useful in some other

context, because REVYZ is not bound to REVIEWA even though we

happened to write it as part of that subroutine. It can be

brought in at any level above the very lowest (250) and function

quite properly.

It is axiomatic in programming that one should avoid repeti-

tive code whenever possible, i.e., when a subroutine can be devised

that will always and invariably achieve a certain effect when

called upon. By being alert to the use of subroutines, the

programmer saves himself considerable drudgery, besides reducing

the chance of random error (in coding and keypunching) to which

repetitive coding is susceptible. His program will compile faster

and occupy less storage space. Execution time will be increased,

but this is usually a minor point.

To return to the problem for which the REVIEWA* subroutine

was suggested as one solution, namely the situation wherein

the author wants to invoke review sequences whenever the values

in certain variables reach prescribed levels:

A second method would be to put TESTs at i.he head of each

set of review frames, and poll them in a series of JUMPs. The

difficulty is that it would be impossible for execution to return

to the point whence it was diverted, since JUMP is an uncondi-

tional command. Only USE provides return to the point of ori-

gin on completion of the frame, block, or statement that is USEd.

Third, it is possible to nest whole series of frames in

blocks, entry to which depends on the results of TESTs and SCANs,

*
These labels are all arbitrary and have no special meaning in
DISCUS.



and this might be a good way to set aside complicated review or

enrichment routines whose execution would automatically adjust to

combinations of values in a set of variables. An example of this

kind of development is not attempted here, however, because it

would involve excessive supporting detail of no immediate interest.

It may be asked, in connection with the subroutine REVYZ, worked

out on page 103, why we needed a subroutine at all, when by simply

limiting the number of times a MATCH, FAIL, or BLOCK block may be

entered we might prevent the same review sequence (REVY) from being

executed twice. Why not encode REVIEWA as follows?

REVIEWA: B;

NOTIFY:

E;

T "X" >= 10;

M 1;

U NOTIFY;

J REVY;

E;

M;

U NOTIFY;

J REVY2;

E;

T "Y" >= 7;

M 1;

U NOTIFY;

J REVY;

E;

M;

U NOTIFY;

J REVY2;

E;

s 11z11 11)(11 Mr;

T "Z" >= 13;

M 1;

U NOTIFY;

J REVY;

W I THINK A SHORT REVIEW WOULD BE GOOD AT
THIS POINT.;

E;

-106-

110



1. Immediately following each ANSWER statement, insert

USE UTILITY;

2. In a protected location, establish a block of code beginning

with

UTILITY: B;

and ending with

UTILANS: A;
E;

3. Inside the UTILITY block, a series of subroutines may be

nested as separate modules, to be added to or changed or removed

as the coding progresses and the exact nature of the service re-

quired is more fully perceived by the programmer.

a. To help the student sign off:

B;

SC SIGN OFF, QUIT, TIRED, 'TERMIN'
SPLIT, GET OUT, 'M THROUGH', 'M THRU', LOG;

M;

W IF YOU WANT TO SIGN OFF NOW, JUST
TYPE "EXIT";

J UTILANS;

E;

(1) "EXIT" happens to be the sjgn-off convention in

use under ILR Berkeley TMS Monitor. At ILR UCLA,

the equivalent term is

b. To dislaay the previous statement (often desirable when

the student has made two or three unsuccful stabs

at a question). An arithmetic variable, previously

established, will have been incremented every time a

FRAME statement is passed through, e.g., SET "FRCOUNT" =

"FRCOUNT" 1;)

B;

SC REPEAT & PREVIOUS, DISPLAY & PREVIOUS,
CHOICES, AGAIN, 'FORG STATEMENT,
'FORG LIST, SHOW ME, NE SEE, WANT
SEE;

-108-



There are two errors in this treatment:

One is that it dces not prevent the student from qualifying for

REVY two times or even three times in a row on the different criteria.

That is, he could have a total Z of 13 and be jumped to REVY, then a

total X of 10 and be jumped again to REVY, then a total Y of 7 and

again be jumped back to the same old review. There is no way of

grouping the three independent tests in such a way that a single

limiting NATCH-FAIL-BLOCK-counter will monitor them unless we set up

a fourth block to test a flag dedicated to this one function -

which brings us right back to the REVYZ routine (T. 103).

The other difficulty is that since MFB-counters are reset

every time execution passes through a FRAME statement, the device

would work only in the unlikely event that REVY contained no FRs,

and then only for the duration of the current frame in the main-

stream of the instruction.

We can draw a general conclusion from this, namely that the

NFB-counters are not particularly suited to subroutines intended

for inter-frame use excert for operations strictly internal t -

Itthe subroutines themselves.

A characteristic Which limits a de in

(as above) may be turned to advantage in'-

one might want to reset MFB-counters during

under certain conditions,

then return. This can be

(FR;) - which need not be

without having to 11

effected by inserting a

labelled - at any joint

MFB-counters are to be reset to zero.

app ica
\.'

r ewptlkiiek

Of a framelF

frame

frame statement

where the

Before the programmer starts writing frames, he will be

well advised to consider the kinds of utility services that should

be available more or less continuously during the running of the

program - services for both the student's and his awn benefit.

DISCUS users may be able to adapt to their needs. They should be

thought of as if they were recipes in a cookbook, which anyone

is welcome to try.



M;

S "ANSWER" = "FRCOUNT';

SC 1;

M;

J (label of first frame of main text);

E;

SC 2;

M;

J (label of second frame of main text);

E;

E;

diagrammed as follows:

SC

IS SC

If first scan

11(

unsuccessful.

c. To allow student to go back to previous frame:

B;

SC GO BACK, PREVIOUS, REPEAT, PRECEDING,
REVIEW, LAST;

M;

S "BACKUP" = "FRCOUNT' - 1;

S "ANSWER" = "BACAVP";

U WHERE;

E;

E;



a. To allow author/instructor, programmer, editor, or "debugger"

to check the status of variables during processing:

B;

SC EDITOR

M;

W EDITOR INFORMATION':'/;

W(ND)

(Name of variable, not) (Name of same
in quoteT- variable, in

double quotes)

etc.

E;

E;

e. PROCTOR MODE, to aJ_2_ma programmer, cecution

to another t of -ar am without using DISCUS s stem

author mode

B;

SC GO TO;

M;

SC (label of FRAME statement at desired
destination, not in quotes.);

M;

J (same label, not in quotes.);

E;

W SORRY, UNABLE TO COMPLY.;*

E;

This routine allows one to access topical subdivisions of

the program according to an outline of the course, keyed with

program labels corresponding to its various rubrics. It is not

as precise a method of jumping around in the program as the //F=t

command affords (see p.137) but is somewhat more convenient for

the non-programmer.)

*This takes care of the unfound label, and of the student who says
"go to hell.")

-110-

114



f. To gather statistical information about student input,

e.g., common spelling errors

B;

SC (word); (or SC (word), (word);

SC (word) & (word);

SC (word) (word); etc.)

M;

S "WORDA" = "WORDA" 4- 1;

E;

SC (word); (etc.)

M;

S "WORT/Y" = "WORDB" 4- 1;

E;

E;

STARRED VARIABLES An unusual feature of DISCUS is an

operation that can be performed on

a character variable by placing it be-

tween two asterisks in a SCAN operand, thus

SC IV*"NIIRIDIumu*rti'

Instead of the contents of the variable being SCanted, as would

be the case if the statement were written in the usual way:

SC "VIRIDIUM"

the variable is filled with data from the ANSWER FIELD.

In order for this to happen, a match must occur between

something in the answer field and SCAN elements immediately

preceding and following the starred variable.

115



At present only character variables may be used.

CAT: D(C) 50;

(something);

A;

SC ' S' "CATS" 'S ';

The SCAN, operating on an answer field of 'SLIVERS', for in-

stance, would obtain a match, and would most assuredly put

LIVER into "CAT".

SC " " *"CAT"* 'S 's

operating on an answer field of 'ARGYLE SOCKS' puts SOCK into

"CAT".

SC '6" "CAT" ";
operating on the same answer field puts OCKS into "CAT".

In single operands or in ored suboperands, only the first

suitable ANSWER field gets inserted, because the SCAN operation

terminates immediately on success. Thus

SC ' S' *"CAT"* "s

operating on an answer field of 'SALLY SELLS SEA SHELLS BY THE

SEA SHORE' matches immediately with -SSALLYV and only ALLY gets

put into "CAT", not ALLY HELLS EA HORE.

116



PART IV - CONCISE DISCUS SPECIFICATIONS

SPECIFICATIONS This section of the MANUAL defines the

basic elements of DISCUS, for use as

ready reference and as a recapitulation

of the material presented in PART II and PART III. As stated

in the INTRODUCTION, DISCUS is an interpretive man-computer

interface system, currently implemented as a conversational

CAI language. It is programmed entirely in assembly language,

for the IBM 360 series. It is characterized by fast execution,

economy of core, and ready interface with CRT-oriented time-

sharing systems.

ARCHITECTURE

REQUIREMENTS

See block diagram, page 115.

Source

Compiler

850
200
80
2

Executor

117
-113-

80-byte card images in
DISCUS source language.

The program which converts
DISCUS source code to DISCUS
OBJECT code. Consists of
approximately

O bytes of basic assembly language
O for output buffers
O for each input buffer
6 for each unique label

(symbol) compiled
2n bytes for print buffers where

n is the block-size of the
SYSPRINT data set (see
page 134, control card nunber
4).

The program which interprets
the DISCUS OBJECT data set.
Consists of approximately

O bytes of executable code
O for each individual

using the system.

850
490



(REQUIREMENTS, cont.) Object Data
Set The data set into which tile

DISCUS OBJECT text is placed
by the compiler. The format
of the object data set is

DCB=(RECFM=VB,BLKSIZE=1000)

TerminaZ CRT displays which may be
erased;
written from top left corner
to bottom right corner, with
a variable number of charac-
ters;
read, from either the top
left corner to the last data
byte on the screen, or
from the first position of
manually-entered data to the
last position of manually-
entered data. Any line from
2 to 100 bytes in length
and a total screen of up to
1100 bytes can be accomo-
dated.

CURRENT IMPLEMEN- DISCUS is currently implemented in time-
TATION sharing systems operating under IBM

OS/360 (Release 17) at the Berkeley and

Los Angeles campuses of the University of California. Terminal

equipment in use at these locations, respectively, consists of

a Sanders 730 CRT System and a CCI 30 CRT System.



O
P

E
N

JT
U

D
E

N
T

G
E

T
A

4O
G

R
4/

1
I

of
lli

so

w
tfa

tA
0

C
O

N
N

A
N

D

./X
4,

41
2-

C
el

f,t
4N

0
X

4N C
O

N
N

A
N

D V

E
N

D
C

O
M

M
A

N
D

B
LX

/(
C

O
N

N
N

V
D

44
74

1,
17

4e
C

0/
04

N
D

11
64

0

3T
LI

O
E

N
T

N
A

/T
E

C
O

N
A

Z
1N

D

ac
eN PR

oc
ia

til

A
D

T
W

R
F

T
..4

h7
O

C
-

W
M

IN
G

A
W

JA
/E

,2

C
O

M
M

A
N

D

C
E

T

10
14

A
4C

T
E

R

4L
L 

N
R

IS
S

A
R

Y
 C

O
N

T
R

O
L 

F
U

N
C

T
IO

N
S

, S
T

O
R

A
G

E
 E

T
C

.

*t
17

#1
26

 N
A

N
t o

f L
A

S
T

 P
R

O
G

R
A

M
 D

E
E

D
.

R
E

S
T

A
R

T
 IF

 A
P

P
R

O
P

R
IA

T
E

I*
* 

Ilk
-N

T
/F

r 
O

P
C

O
D

E
 S

E
T

 U
P

 B
E

G
IN

N
IN

G
 A

N
D

 E
N

D
 P

O
IN

T
E

R
S

D
R

/P
S

9

9 
I

G
ir

(N
E

X
T

)
sT

A
T

E
 -

M
IN

T

*M
O

E
0 

0

Z
/O

r-
 -

rT
T

J



GLOSSARY

Stateme;

Opcoda

OPerand

The following definitions correspond with

standard meanings for the terms defined,

qualified toe:pp:1y to DISCUS.

A statement is the smallest cohesive unit
with which the DISCUS compiler will deal,
The DISCUS COMPILER accepts statements,
each of which must contain one and only
one opcode ( q.v.) and each of which must
be terminated by a semicolon as an end-of-
statement delimiter. A statement usually
contains an operand ( q.v.) between the
opcode and the end-of-statement delimiter.
A statement may be identified by a label
(q.v.) which must itself be followed by
a colon. Thus the format of a DISCUS
statement is typically:

LABEL: OPCODE OPERAND;

A DISCUS OPCODE defines the nature of
the operation which is to take place.
If the statement includes an operand,
at least one blank must be interposed
between the opcode and the operand.
If no operand is encoded, the opcode is
followed by the statement-delimiting
semicolon, either immediately or with
one or more blanks interposed. Thus
the following are all legal:

OPCODE OPERAND;
OPCODE OPERAND;
OPCODE;
OPCODE

Any of several types of parameter. These
may be absolute data, symbolic labels, or
codes pecnliar to special operations. The
OPCODE generally performs an operation
either on or using an OPERAND. One or
more blanks may be interposed between the
end of the OPERAND and the statement-
delimiting semicolon. (For the effect of
doing this with a WRITE opcode, see page
22fe) Both of the following are legal:

OPMAND;
OPERAND

The OPMAND must always be preceded by at
least one blank.

120
-116-



(GLOSSARY, cont.)

Suboperand

Label

Word

Literal

This is a term peculiar to DISCUS, de-
noting portions of a SCAN operand which
are logically separated by an ampersand
(&), "or-bar" (1), or comma. Thus in
the ftillowing:

SCAN BEANS PEAS, CARROTS & CORN;
the following const.itute suboperands:

BEANS PEAS 2

CARROTS and
CORN.

A LABEL is a character string used to
identify and locate a statement. In
the current implementation of DISCUS,
it may not exceed 8 alphanumeric char-
acters, of which the first must be alpha-
betical. It must end with a colon, or
one or more blanks followed by a colon.
It must not be broken by blanks. No
more than one label may be attached to
a single statement, nor may the same
label be attacheó. to more than one
statement.

4ORD is a string of characters which
does not include imbedded blanks, special
characters, or symbols, and which is sur-
rounded by blanks, either explicit or
implicit. WORDS used in SCAN statements
constitute elements against which a user's
response may be compared.

A LITERAL is a string of characters,
punctuation marks, symbols, and explicit
blanks, not used in a special code sense.
In order to be treated as a LITERAL such
a string must be surrounded by single
quotation marks. (For use of these marks
themselves as LITERALS, see example,
page 26. Inclusion of a character in
a LITERAL suppresses any spec'.a.1 char-
acteristics which it may normally possess
in the DISCUS system.

Character A CHARACTER STRING VARIABLE is a string
whose length or content is variable and

String which is accessed by a label. Its con-
Variable tents may be changed during execution.

121
-117-



(GLOSSARY, cont.)

Numeric

Variable

Match Block

Fail Block

Unconditional

Block*

Block LeveZ

The space for a character string vari-
able must be pre-established by a sepa-
rate defining statement.

A NUMERIC VARIABLE is a field intended
to contain a numerical quantity whose
magnitude may be changed during execution.
The space for a numerical variable must
be pre-established by a defining state-
ment. The contents of L va-fiable are
accessed by referring to iss label.

A block of code which is entered only if
a SCAN or TELL immediately preceding it
has been satisfied.

A block of code which is entered only if
a SCAN or TEST immediately preceding it
has not been satisfied.

A block of code which is entered regard-
less of match or fail condition resulting
from a SCAN or TEST. Entry into an UN-
CONDITIONAL BLOCK serves to increment the
existing block level.

A numerical value (1 to 250) assigned
to individual nested blocks. Thus a
block within a block which is within a
block at level 1 will have a block level
of 3.

*Sometimes called the "Block block."

122
-118--



OPCODES The functions of the DISCUS OPCODES

and their modifiers are defined in

the pages which follow. Technical

notes are added in some cases. The order of presentation is

the same as that used in PART III.

WRITE or W The WRITE opcode (command) causes the

screen to be written from the top, after

erasing all previous display material.

If the number of characters in the statement exceeds screen

capacity, it will write to the end of' the screen and then wait

until the console-user presses the interrupt button (or other

designated signal, such as "send page" on the Sanders system).

This action is treated as a continuation of the WRITE command;

the screen is erased; and the remainder of the statement is

displayed.

End-of-line formatting is automically performed.

WRITE(NF) or W(NF) This command writes without end-of-line

formatting.

WRITE(ND) or W(ND) This command write.3 withOut first

erasing the screen. The characters to

be displayed are laid down beyond the

previously-written text. The format or no-format style of the

preceding WRITE command is continued in the WRITE(ND).

123
-119-



ANSWER or A The ANSWER OPCODE sets in train the

following operations:

1. It causes a carat to be displayed at the beginning of the

line below the currently-displyed WRITE text, to invite key-

board input. The input itself is displayed as typed, wp:thout

disturbing the WRITE display, and without being =isidered by

computer until "send" is signalled by the student.

2. After "send," ANSWER takes whatever has been typed* and

puts it in a character variable whose name is "ANSWER." (This

is not an ordinary label address, but a reserved word, predefined

in the system.) The ANSWER fiell can contain as many as 250

characters, any excess being trunco_ted on the right. A record

is also kept of the total nuMber of characters present in the

ANSWER field.

During a SCAN only, in addition to the characters and

blanks actually input, ANSWER inserts a blank at the beginning

of the field, and one at the end. Thus the character-count

is always increased by two.

At the start of program execution, the ANSWER field contains

unknown information (usually nothing). Thereafter it contains

the data recorded there on the occasion of the last "send."

Whenever a new "send" is signalled, the new input (which

may also be nothi-!..s at all) entirely displaces what was there

before.

In order to save the contents of the ANSWER field at a

particular stage during execution, they must be transferred to

a defined character variable (see SET, p. 57). Meanwhile,

however, they can be scanned successively for various elements,

*None of the constraints applying to the coding of reserved
characters (single quotes, double quotes, etc. ) Are imposed on
student input. If the student Laputs any of these, they are
automatically treated as literals.

124-
--120-



may be quoted in WRITE displayed by imbedding the reserved

word "ANSWER" (always in doUble quotes) in the WRITE operands,

may be added-to, and may have selected material copied out

of them through the use of "starred variables" coded in SCAN

operandz (see p. 111).

125



ANSWER(NF) or A(F) This opcode functions in exactly the

same way as ANSWER, except that instead

of placing a carat and cursor at the

beginning of the line below the last line of WRITE text, it

eliminates the carat altogether and places the cursor at the

end of the WRITE text, or at the end of any elements "supplied"

to the screen by the ANSWER operand (see p.39). The student

may back the cursor across such elements in order to fill in

a blank anywhere in the ANSWER operand. This is illustrated

in the following example:

Statement: - WRITE PLEASE SUPPLY TEE MISSING WORDS IN THE FOLLOW-
ING FRAGMENT CF SHAKESPEARE':7 WHEN TO THE
SESSIONS OF SWEET SILENT / I SUMMON UP;

Display: -

Display: -

Statement: -

A(NF) OF THINGS PAST;

WHEN TO THE SESSIONS OF
SWEET SILENT
I SUMMON UP
OF THINGS PAST_

Confronted with this display, the student would
be able to move the cursor back as shown below,
overwrite the solid line, and have his input con-
sidered as part of the ANSWER field:

WHEN TO THE SESSIONS OF
SWEET SILENT
I SUMMON UP
OF THINGS PAST

He could move the cursor further back, i.e.,
into the block of WRITE text, but his input will
not be seen by the ANSWER statement. Accordingly,
the example represents a poor formulation, Cor-
rectly encoded, the ANSWER operand should have
been written

A(NF) I SUMMON UP OF
THINGS PAST.;

126
-122-



SCAN or SC SCAN searches the ANSWER field for ele-

ments specified in its own operand.

These elements may consist of words,

strings of words, single characters, numerals, punctuation

marks (oded as literals) and blanks (also coded as literals).

A string containing a combination of words, blanks, punctuation

marks, etc., if it is to be sought in exactly the same form as

that in which it appears in the SCAN operand, needs to be speci-

fied as a literal in its entirety by surrounding it with single

quotes. If intervening words in the ANSWER field are acceptable,

the string should not be specified as a literal.

Statement SCAN SODIUM CALCIUM;

Result The ANSWER field will be searched for two
separate words, sodium and calcium, in that
order,

Statement SCAN 'SODIUM CALCIUM,';

Result The ANSWER field will be searched for the
two words in that order, separated by a
single blank and followed by a comma.

Successful match of a SCAN specification against some part

of the ANSWER field is reflected by the setting of a condition

code to "match". Failure sets the condition code to "fail".

The SCAN operand can be divided into two or more sub-operands,

each of which is compared (in the order of their specification)

against the contents of the ANSWER field until a specified corn,

bination succeeds, at which time the condition code is set to

"match", scanning ceases, and processing jumps to the next

statement.

Suboperands are separated from each other by commas, or

"OR"-bars (I), both of which act as "or" logical operators, or

by ampersands, which serve as "and" logical operators.

Statement SCAN SODIUM, CALCIUM;

Resut The ANSWER field will be searched first for
SODIUM. If found, the condition code will
be set to "match" and execution will jump
to the next statement beyond the delimiting
semicolon- If not found, the ANSWER field
will be searched for CALCIUM.

12?
-123-



Statement SCAN SODIUM & CALCIUM;

Result The ANSWER field will be searched first for
SODIUM, then for CALCIUM. The "match" con-
dition code will be set only when both are
found. The order in which the two appear
in the ANSWER field will not affect the result.

When it is desired that the ANSWER field will be searched

for elements which will match the contents of some variable,

the latter can be specified in the SCAN operator simply by re-

ferring to the variable's label address, in double quotes.

Statement SCAN "CHEMICAL";

Result If CHEMICAL is the label of a character
variable containing - say - PHOSPHATE, then
PHOSPHATE is the word which will be com-
pared against the ANSWER field, as it were
another literal.

If CHEMICAL is an arithmetic variable, the
numerals making up its contents are treated
as characters, in a literal string. Combi-
nations of letters, words, blanks, punctuation
marks, etc., in a variable's operand are al-
ways treated as a single literal string when
expanded into a SCAN operand in this way.

Statement (Assume CHEMICAL contains PHOSPHATE, SULPHATE)

SCAN "CHENECAL";

Result Equivalent to that of

SCAN 'PHOSPHATE, SULPHATE';

In the current im?lementation of DISCUS there is no way of

activating, in a SCAN operand, commas or ampersands fetched from
a variable. Thus the contents of a variable must always be

scanned for in their entirety, as a literal, rather than as a
group of suboperands.

A third logical operator usable in a SCAN operand is -the

"not" sign (-O. It has the effect of negating all elements in

the suboperand in which it appears.

Statement SCAN -1CAT;

Result Any ANSWER field which does not contain
CAT will be matched.

128
-124-



Statement SCAN CAT -IMOUSE; or SCAN -1CAT MOUSE;

Result Any ANSWER field which contains neither CAT
nor MOUSE will be matched.

Statement SCAN CAT & -1MOUSE;

Result An ANSWER field containing CAT but not MOUSE
will be matched, since the --I does not apply
to the cat suboperand.

Statement SCAN CAT, -1 MOUSE;

Result The ANSWER field will be searched first for
CAT. If successful, the operation will ter-
minate without checking for -1 MOUSE. If un-
successful, the ANSWER field will be searched
for -1 MOUSE, and if no MOUSE is found a match
condition will be set.

Statement SCAN -1 MOUSE, CAT;

Result The ANSWER field will be searched first for
MOUSE. If no MOUSE is found, a match con-
dition will be set and execution will jump
over the CAT suboperand. If a MOUSE found,
scanning will continue to the second sUboperand.

By scanning for parts of words as literals it is possible

to dbtain matches against misspelled words, in many cases. For

such purposes the literal for a word-beginning must include the

starting blank, the literal for a word-ending must include the

ending blank, and the literal for a possible word-middle should

include no blanks at all.

Statement SCAN ' DOD';

Result A match will be obtained if the ANSWER field
contains any word beginning 'DOD...'

Statement SCAN 'DRON ';

Result A match will be obtained if the ANSWER field
contains any word ending with '...DRON'

Statement SCAN 'CAH';

Result A match will be obtained if the ANSWER field
contains any word containing that combination.

All three will succeed with DODECAHEDRON,
for example.

129



DEFINE or D DEFINE statements are used to establish,

without initializing, the variables to

be used in a particular DISCUS program.

In each case the DEFINE opcode must be qualified in such a way

as to establish whether the variable is to be used to contain

mathematical data or characters:

DEFINE(A) or D(A)
DEFINE(C) or D(C)

arithmetic
character

In addition, the maximum length in number of characters

(up to 250) must be specified for D(C), in order for the com-

piler to reserve adequate space for planned content.

DEFINE statement are always labelled, otherwise the

variables which had been created would not be accessible.

Typical defining statements of each type would be:

ADDO: D(A);
CHAR: D(C) 100;

130
-126-



SET or S The Shi statement is used to initialize,

alter, or clear the contents of a var-

iable. The SET operand aIways contains

three elements: an objective variable (to the left of an equal

sign), the equal sign itself, and the material with which the

variable is to be equated. Names of variables specified in SET

operands are always separately surrounded by double quotes. Let

us assume "EINSTEIN" and "RELATIVE" are arithmetic variables.

Statement SET "EINSTEIN" = "RELATIVE";

Result Whatever the contents of RELATIVE may be now
become the sole contents of EINSTEIN.

Statement SET "EINSTEIN" = "EINSTEIN" 4- "RELATIVE";

Result EINSTEIN now contains its prior content plus
the contents of RELATIVE.

RELATIVE is unaffected in both cases.

The kind of variable (i.e., arithmetic or character) which

is the object of the operation, and which is always named immedi-

ately after the opcode, determdnes whether the operation will be

arithmetical or character-manipulative.

Statement SET "ADDO" = 2 2 ;

Result If ADDO has been defined through a D(A), it
will now contain 4,

Statement SET "CHAT" = 12 4- 2';

Result If CHAT has been defined through a D(C), it
will now contain the literal 2 A- 2 (2-0112).

Words or strings placed in character variables must be speci-

fied as literals, as above. Otherwise the operation will fail, or

have unspecified results.

Statement SET "CHAT" = 2 4. 2;

Result CHAT is set to null.

If an attempt is made to place a character variable in an

arithmetic variable, numerals and operators will be dealt with

arithmetically, but all other characters will be converted to

zero and disregarded.

131



Statement

Result

SET "ADDO" = '20 QUESTIONS';

ADDO will contain the number 20.

The presence or absence of blanks outside of integers and

literals in any SET operand is immaterial.

Statements SET "ADDO" = 128786+4;

SET "ADDO" = 128786 4

Result The same.

Statements SET "CHAT" = 'A"B"C' ',D';
SET "CHAT" = 'ABCh,,D';

Result The same.

The contents of a variable may be altered directly, as in

SET "ADDO" = 4;
SET "CHAT" = 'HELLO, THERE!';

or indirectly, as in

SET "ADDO" = "MATH";
SET "CHAT" = "VERBOSE";

A character object variable is always set to the concati-

nated result of the expanded variables and the literals on the

right side of the equal sign. Arithmetic variables are expanded

and converted to character string equivalents before processing.

One or more arithmetic operations may be performed on the

contents of an arithmetic variable, using the following operators:

add
subtract
multiply
divide
anything else is considered a plus sign.

Arithmetic expressions are evaluated from left to right, with

no hierarchy of operations being observed. All processing is

in integer arithmetic, and all intermediate fractional results

are dropped.

Statement SET "ADDO" = "MATH" + 10 / 13 + 2

Result (Assume "MATH" contains 7)
ADDO will be set at 15.

*5;

If the prior contents of ADDO are brought into the operation,

the sequence of doing so is highly important. The result of

-128-



S "ADDO" = "ADDO" + "MATH" + 10 / 13 + 2 * 5 is quite different

,rom the result of S "ADDO" = "MATH" + 10 / 13 + 2 * 5 + "ADDO".

In dealing with character variables, arithmetic operators

have no effect:

Statements

Result

SET "CHAT" = "VERBOSE" + "PROLIX";
SET "CHAT" = "VERBOSE"PROLIX";

The same. The contents of VERBOSE are placed
in CHAT, followed by the contents of PROLIX.

(Neither VERBOSE nor PROLIX is affected)

In order to prevent concatination of elements packed into

character variables, it is often necessary to specify blanks:

Statement

Result

SET "LIST" = 'COFFEE' + 'TEA' + 'ROOT BEER';

LIST will contain COFFEETEAROOT BEER.

Statements SET "LIST" = 'COFFEE' + 'TEA' + +
'ROOT BEER'; or

SET "LIST" = 'COFFEEb' 'TEAb' 'ROOT BEER';

Result LIST will contain COFFEE TEA ROOT BEER.

Both arithmetic and character variables are cleared by omitting

to specify anything to the right of the equal sign.

Statement

Result

Statement

Result

SET "ADDO" = ; or SET "ADDO" = 0;

ADDO will contain zero (0).

SET "CHAT" = ;

CHAT will contain nothing.

While numerical quantities may be subtracted from the

contents of arithmetic variables, there is no way of subtract-

ing characters from character variables except by truncation,

that is, by transferring the entire string to another variable

which has been so defined that there will not be room enough

for all the characters, and the excess will be dropped off.

A character string may be scanned, however, for particular

elements, after first being transferred to the ANSWER field

for the purpose.

133



Statements

Result

SET " ANSWER" = "CHAT";
SC COFFEE;

If "coffee" appears anywhere as a separate
word in the string, it will be detected
and a match condition will be set.

TEST or T The TEST statement compares the contents

of an dbject variable (specified to the

left of a logical operator in the operand)

with whatever is specifiad to the right of the operator. TEbT

much resembles SCAN, except that it must always succeed in its

entirety in order to set the condition code to positive.

The logical operators used in TEST are:

equals
is greater than
is less than
is not (=, >, and/or <)

and they may be used singly or in any combination.

Example 1: T "X" = 4;

Example 2: T "ALPHA" ='13NOW;

Example 3: T "Y" > "Z" + "N" - 2

JUMP or J The JUMP statement transfers control

unconditionally to a statement located

elsewhere in the program, as specified

by that statement's label address, entered (not in quotes) as

the operand of the JUMP statement.

Statement JUNP SASPARIL;

Result Processing breaks sequence and jumps to the
statement whose label is SASPARIL.

134
-130-



MATCH or M Permits entry into the block of code

which follows it only if the last pre-

ceding SCAN or TEST has succeeded, i.e.,

if the current condition code is positive. As each such block

is entered, the level of processing drops to the next lower

level. This brings intc -1Lay a nev condition code which can

be modified without affecting the conditions that enabled entry

into that block. In the current kmplementation of DISCUS, each

statement in the block is processed but not executed until an

END statement (q.v.) is encountered at the same level at which

the "ignore mode" was initiated. Blocks may be nested to a

depth of 250.

A MATCH statement may be suppressed after N executions by

specifying N. The N-counter (hereinafter called the "MFB-couLter")

is reset by FRAME (q.v.).

FAIL or F Permits entry into the block of code

which follows it only if the current

condition code is negative. Otherwise,

FAIL operates in exactly the same way as MATCH.

BLOCK or B Permits entry into the block of code

which follows it, regardless of current

condition code setting. BLOCK serves

to drop the level of processing one level. Looping may be

limited in the same way as is done with MATCH and FAIL, by an

"MFB-counter."



FRAME or FR The FRAME statement marks the beginning

of a logical division of DISCUS 2ode,

and is usually labelled. It has no

operand, and performs no overt processing. It does, however,

reset all MATCH, FAIL, and BLOCK recursion counters ("MFB-

counters") to zero, serves as a point of reference for USE

statements accessing it, and serves as a restart location.

A "frame" as referred to in this manual comprises all

the coding beginning with a EEAME statement and ending at the

next FRAME statement in sequence. Normally a frame contains

a. Instructional test (W)

b. A question of requirement (W or W(ND))

c. Opportunity for student input (A)

d. Program reactions (SC, T, S, M, B, J, U, S, E, W, etc.)

In order for it to be meaningful as a conversational unit,

it must contain at least (c) and some form of (a).

NOTE or N The NOTE opcode causes its operand to be

printed in the OBJECT listing. It is

otherwise inert. In addition to pre-

serving and drawing attention to programmers' memoranda, NOTE

can be used as a temporary replacement for other opcodes, when

it is desired to deactivate a statement temporarily without

actually removing it from the source or from the object module.

This can be done very simply by encoding Nia ahead of the existing

opcode.

END or E This opcode terminates a block which

was entered at its awn level (through

a MATCH, FAIL, or BLOCK statement). To

emerge from a nested block structure, a separate END statement

is required for each upward step, and the total nuMber of END

statements must equal, but not exceed, the sum of all MATCH, FAIL,

and BLOCK statements associated with that structure.

136



USE or U The USE statement transfers control

temporarily to one or more statements

accessible through a label address

specified in its operand. The scope of this instruction depends

on the nature of the first statement encountered at the location

addressed:

a. If it is a FRAME statement (q.v.) the entire frame

will be executed, and as soon as the next FRAME state-

ment is encountered processing will return automatically

to the point immediately after the USE statement which

invoked it.

b. If it is a MATCH, FAIL, or BLOCK statement, it will cause

the entire block governed by that statement to be exe-

cuted, and will return automatically as soon as it en-

counters an END statement at the same level as the MATCH,

FAIL, or BLOCK statement by means of which it first

entered the block.

c. If it is any other kind of statement it will process

that one statement and return.



JOB CONTROL LANGUAGE In order to compile a DISCUS source
FOR COMPILING DISCUS

program in either the UC (Berkeley)

or UCLA systems, certain Job Control

statements must precede and follow the source deck when it is

read into the IBM/360.

MRVII FRI
I i

1 ii
'e,SYSIK DP BATA

nO CYCOUT.4.DCS.CitrtrIlwYBAoltUl.125.11LBLIZEmetLI
ee IPACE.(741[1(1.1)).WLIMr.Nr...11444.UNIT.P1.4

eeDIVCUS BD VV4.1LRAIAVIG.Diss.(mg,Kup).
eellVoltItir OD TYLIVIT.B.BC1.11LBSIZL.4.5

T70.1.11 LB DISP.B.107374.107.FATOBAR
P,AooliftrA.V.PLAM.,M11n1611(iorr)orT.Itj

ee.mm. ra, JA.4.31,46.10111.14CRE#ITN.MtGLEVEL.I.OLIASA.
I i o

f

The following control r

at Berkeley:

PAcm.

111111

111311

; IIIII

to the system implemented

1. //J5894JCM JOB (589)-,5,200,100),MEREDITH,MSGLEVEL=1,CLASS=L

A standard JOB card for IHM 360 running under OS/360
(version 17).

2. // EXEC PGM=DISCUS,PARM='SORMGIN=(1,72),TTRZ'

An EXEC card specifying the normal production DISCUS
compiler and PARMs for special functions (see Note
#11 below).

3. //STEPLIB DD DISP=SHR,DSN=ILR.BATCHLIB

A STEPLIB card defining the library in which the DISCUS
compiler resides.

4. //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=n (n is any integral multiple
of 133)

A SYSPRINT card specifying where the Tisting of the program
as compiled is to be written.

138
_134-



5. //DISCUS DD DSN=ILR.NAVIG,DISP=(OLD,KEEP),
SPACE=(TRK,(1,1)),VOLUME=SER=ILR04,UNIT=2314

The data set in which the compiled DISCUS object code
is to be placed for later execution.

6. //SYSUDUMP DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=882)

For compiler or system error only.

7. //SYSIN DD DATA

A SYSIN card indicating that the DISCUS source program
follows.

8. Deck of source statements.

Marks end of DISCUS source.

Marks end of program.

11. The PARM field may contain aiy combination of the following,
in any order separated by commas (no blanks):

a. SORMGIN=(n,nn) Sets the margins of the source card
images, "n" being the number of the column on the
punch card for starting the image (as low as 1) and
"nn" being the number of the column for ending the
image (may be as high as 80). (If not specified, (1,80)
is assumed.)

b. TTRZ C-nerates a table of correspondence between
statemr-nr_ numbers and the actual direct access lo-
cation_ 1.elative) of the statements as compiled.
Both are printed alongside the statements in the
object listing. The TTRZ number provides ready
access to any statement through AUTHOR MODE (see
PART V.)

c. SNAP For system debugging only.

d. STOP=stopcharacter When the single byte stop-
character is encountered in a source card image, pro-
cessing continues at the beginning of the next card image.

e. DEBUG For system debugging only. A listing of all
DISCUS statements, with special flags, is produced.

f. SYMBOLS=number The absolute maximum number of symbols
for which utility space will be reserved is here spec-
ified. If not specified, all the core storage in the
program's region will be used for symbol table stcrage.

139



PART V - SYSTEM AUTHOR MODE

DESCRIPTION System Author Mode, is a mode of oper-

ation available at the student terminal

by means of which a DISCUS user (in the

sense of an author/instructor, programmer, editor, etc.) can

artificially influence execution and can arbitrarily junp from

one part of the program to another. It may be invoked by en-

tering the special command //A=Y at the terminal. This command

may be entered at a carat or, if there is none, in the top left

hand corner of the screen.

DISTINGUISHED FROM In Part III, as one of the subroutines
PROCTOR AUTHOR MODE useful in the programmer's repertoire,

we suggested one which would permit a

user to junp execution to another part of the program without

using DISCUS System Author Mode. This, Proctor Author Mode,

device is essentially custom-made for a particular instruction-

al sequence, as it entails coding a SCAN command and a JUMP com-

mand for every unique location (according to label address) to

which one wishes to be able to junp.

This has its advantages and di-sadvantages.

On the one hand, Proctor Author Mode is a convenient way

of getting around in the program without worrying about the

precise disc location of the object statements (the TTRZ num-

ber). If the user makes a mistake in designating a label, he

is so informed, rather than being transferred to some wrong

point in the program. The labels can be directly keyed tc writ-

ten text and to the author/instructnr's outline, ad of ccse

appear on all dbject listings oppoeite the ,atements to vinich

they are .affixed, as well as in a separate alphabetical 1=st

140
-137-



showing the numbers of all statements referring to them.

On the other hand, in a program of any size, the work of

encoding and punching the hundreds of SCAN and JUMP statements

involved in a Proctor Author Mode routine is considerable, and

the resulting code is good only for one specific set of labels.

Moreover, it must be updated whenever the program itself is

substantially changed. The processing of this routine is fairly

expensive in terms of computer time: in the case of one of our

CAI courses, having 297 labels accessible by this method, the

IBM 360/40 takes up to 23 seconds of real time to get to the

last label on the list.

But its most serious weakness is that it doesn't reveal

what is going on inside the program, in the way the System

Author Mode does. Proctor Author Mode merely tramafers from

normal execution in one place to normal execution LT: another.

DIAGNOSTIC DISPLAY An integral part of SYSTEM_AUTHOR MODE

is the diagnostic display which appears

on the screen whenever invakelthrough

a System Author Mode command from the terminal, and Plso when-

ever an unexecutable statement occurs during proceesing. Ex-

amples of both are shown on page 140.

SYSTEM AUTHOR MODE The following SYSTEM AUTHURJMODE commands
COMNANDS

//A=Y

are available to the user:

Enter author mode after ex=ntion of

each statement.

Other author mode COMMEMIEM do not

depend on //A=Y having first been entered,

but when not under //A-Y .1--,=erssinz,. will

revert to normal processimz EU. the first

opportunity. After specir-r-..,117 invoking

author mode through //A=Y, -3rocesFing

remains in author mode unt'f_ rev,ed.

141
-138-



//A=N Turns off author mode.

Suppresses all JUMP statements that

would normally be executed.

/IJ=Y Reinstates the operation of JUMP statements.

//S=number Causes processing to stop at the state-

ment nunber specified (per OBJECT list-

ing). May be pre-set at any time.

//V=block numberboffset (works only under //A=Y)

Causes the contents of a character vari-

able to be displayed. The user must speci-

fy the block number and the offset in

that block in order to retrieve the vari-

able from the student data set. The in-

formation describing the location can be

found in the source listing.

//F=TTlaRlaZ This is the basic "jump" command in Sys-

tem Author Mode. The "TTRZ" refers to the

disc location of each statement, which

differs by one "R" from that indicated

in that dbject listing. Thus if the user

wants to go to the statement whose TTRZ

as shown in the dbject listing is 1/6/30,

he should input

//F=11474:30.

The true location also differs by one

from the TTRZ as shown in the diagnostic

display. In case of dolibt, use the nunite-.2r

as shown in the dbject listing and advae

to the desired location.through success:7----;

interrupts.

142
-139-



EXIT (Berkeley)
END (UCLA)

Exits from the program. The student data

set is preGerved, and a notation of the re-

start location (last frame) is recorded.

EDITING There currently is no dynamic editing

facility within the DISCUS system. That

is, one cannot change the OBJECT MODULE

from the terminal unless such a facility is available outside

DISCUS, i.e., in the time-sharing monitor which controls the

overall operation. (UCLA's "URSA" monitor does provide this.)

Typical
Display

Interpretation:

DISCUS DIAGNOSTIC SCREEN

REQUESTED AUTHOR MODE

OPERATION STATM COND LEVEL TTRZ1

7 FAIL 1 0-1-8

"ZAP" = 1

The executor has just executed the 7th state-

ment in the program viadch is a SET statement.

The condition code fdr current execution pur-

poses s FAIL. Exacation is proceeing at

level 1. Them.tatemen± occupies disc storage

positiam 0-1-7. Unlif.rneath the line of hy-

phens is- displEyed,the operand of the state-

ment in. questLon.



PART VI EXERCISES

A. WRITE STATEMENTS AND ANSWER STATEMENTS 143

B. SCAN STATEMENTS 147

C. USE OF LOGICAL OPERATORS IN SCANS 151

D. VARIABLES 153

E. DECISIONS 160



HOW TO USE THIS CHAPTER

Space is provided (either as a display screen or as a few

blank lines) for you to write your answer to each question

as you proceed through this section.

For the most part, solutions to problems are provided

on the lower part of the same page, below a broken line. You

should cover everything below the broken line until you are

ready to check your answers.

145

-1142-



A.

WRITE statetent8 and'ANSWER state/tents.

1. How will the following appear on the screen? (Assume a 27-character-
per-line screen capacity.)

WRITE HER HUSBAND"S TO ALEPPO GONE.;

1.

EFS HUSBAND'S TO ALEPPO
GONE.

146
-143--



2. How will this appear? Show location of cursor after execution.

WRITE FOR "NRS. CRUMLEY"S" FRITTEhS USE THE FOLLOWING
INGREDIENTS':'/Iablabl EGG/b1313141'/'2 CUP "PET" MILK/
131313132LB.FLOUR///GOOD LUCK.;

2.

FOR "MRS. CRUMLEY'S"
FRITTERS USE THE FOLLOWING
INGREDIENTS:

1 EGG
1/2 CUP 'PET' MILK
2LB.FLOUR

GOOD LUCK.

1.47

-144_



3. How might the following display have been encoded?

/NO, IN ANSWERING "BURNHAM \
WOOD" YOU HAVE NOT CORRECTLY
IDENTIFIED THE INVENTOR OF
PYROGRAPHY.

4. How would you add the words "TRY AGAIN" to the above screen?

3. WRITE NO, IN ANSWERING "'"ANSWER"'" YOU HAVE NOT CORRECTLY
IDENTIFIED THE INVENTOR OF PYROGRAPHY.;

4. WRITE(ND) TRY AGAIN.; or W(ND) TRY AGAIN.;

148
-145-



5. How would you encode the statement creating the following display?
(Use to indicate blanks.)

TABLE OF ENGLISH GUN SIZES:
POUNDER DIA.(IN.)

32 6.41
24 5.82
18 5.29
12 4.62
9 4.20

6. What opcode might be useful for displaying long numbers of
formulae, or to get the maximum number of words into a screen?

5. WRITE TABLE OF ENGLISH GUN SIZES ':'/1313POUNDER1313131313DIA.(IN.)/
be beebb ibbli#1932bbbbbbbbbb6.41/1313131324131319131313131319135.82/

bebb1813131313131411913135.29/13131313121abbbblAbbb4.62/1abbbb9bbbbbbbbbb4.20/;

6. WRITE(NF); or W(NF);

1484
-146-



B.

SCAN STATEMENTS

[A] Which of the following SCANs will intercept (i.e., match,

or succeed with) the ANSWER field contents shown?

SCAN_ statement ANSWER field

1. M F SC BARE CHOIRS; BAREblabCHOIRS

2. M F SC EXPOSTULATION REPLY; REPLY AND EXPOSTULATION

3. M F SC ' EXPO"ON ' REPLY; EXPLOSION REPLY

4. M F SC 'POSTU' REPLY; YOUR EXPOSTULATION
MERITS A REPLY....

5. M F SC QUINQU1RE14E OF QUINQUERIME OF NINEVEH

NINEVEH FROM DISTANT FROM DISTANT OPHIR
OPHIR;

6. M F SC QUIT; I'M TIRED AND HUNGRY AND
I WANT TO QUIT!!!

(solutions to [A] 1-6)

1. Match. Intervening words and/or blanks do not affect the operation.

2. Fail. Elements must be in the stated order.

3. Fail. The literal - '
EXPO' is distinctive enough to screen out

"explosion. v, (However, exposition" would have matched.)

4 Match. The literal 'POSTU', taken from the middle of the word, is

more distinctive than would be a literal at either of the

ends. Neither "explosion" nor "exposition" would have got

through.

5. Fail. Difficult input ruined by single spelling error. A more

selective tr rould have been more practical,
e.g., SC ' EH ' DISTANT ' OPH';

6. Match. Preceding, intervening, or following words and/or blanks

do not affect the operation, nor do the three exclamation

marks.

150,
-147-

_J;1.



([A] cont.)

7. M F SC QUIT; I'M NOT QUITE SURE

8. M F SC T; THE STATEN/MT IS TRUE

9. M F SC T'; THE STATEMENT IS TRUE

10.M F SC 'T '; THE STATEMENT IS TRUE

(solutions to [A] 7-10)

7. Fail. The SCAN demands a blank after the "t" of "QUIT". To
match both QUIT and QUITE the element should be specified
as a literal: 'QUIT'.

8. Fail. Same problem. The SCAN demands a blank on both sides of
the "t".

9. Match. Will match any answer containing a word beginning with T.
In this case, it caught on TRUE.

10.Match. Will match any answer containing a word ending with T.
In this case, it caught on STATEMENT.

151
-148- .



[B] After displaying the question "Who was Horace Greeley?", suppose

you want to intercept answers of the following sense: - "He was

a newspaper publisher." Formulate a SCAN operand which would

best suit this purpose. (Disregard possibility of negatives.)

SC

[C] Formulate a SCAN similar to the above, but with the added IF-rsa=m

that it will smcceed only, if the answerrer also men-V-7ms the

(New Yorh) Trrhune.

SC

[D] Formulate a SCAN which will ensure tn 151e student uses a

semi-colon somewhere in his reply.

(solutions to [B] throuel [D])

[B] SC ' NEWSP1;

[C] SC ' NEWSP' & ' TRIB';

[D] SC ';';



[E] Formulate a SCAN which will emsure the student's sibsolimte
accuragy in inputting the follawing:

It's not the 'eavy 'auls that '1.1rts the 'osses 'aloves; It's the
lamMer of the 'ard, 'ard

SC

(scl-otion to tEl)

0.=...,-

[F: SC TIT"S .N,L17 THE "EAVY "AULS THAT "URTS Th 1169,12 'COVES:,

IT"S THE "AMMER, "AMMER, "AMER OF THE "AEL, "IGEMA/E..';

(Explanatiam: The lone singLe quotes at the b=irr g

end of the string define the string as a literal, k
semicolon and commas need not be separately er-,-lose 12

quotes. This does not suffice for the apostraphies
because they are always regarded as on-off switchlei-,
whenever they occur. The basic rule applies, thet s
quote, in order to be treated as a literal MUS7 be -I=
whether or not it is inside a literal string.)

153
-150-

amd
the

single
-ver,
literal,
.gle
ed,



C.

USE OF LOGICAL OPERATORS IN SCANS

LA] Wihich of the following would succeed?

SCAN statement

Which fail?

ANSWER field

1. M. F SC FISH, FOWL, GOOD RED HAMILTON FISH
HERRING;

2. M SC FISH, FOWL, GOOD RED FOWL AND FISH
HERRING;

3. M SC FISH, FOWL, GOOD RED CERTAINLY NOT HERRING!
HERRING;

. T-7 SC DIAMONDS & EMERALDS & A CARGO OF DIAMONDS
AMETHYSTS; AND EMERALDS

5. ji F SC DIAMONDS & EMERALDS & DIAMONDS AND AMETHYSTS
AMETHYSTS; BUT ABSOLUTELY NO

EMERALDS OR TOPAZES

E. M F SC SANDALWOOD & CEDARWOOD, SANDALWOOD AND SWEET
AND SWEET WHITE WINE WHITE WINE

(solutions

1.

2.

to

Match.

[A] 1-6)

Succeeds on FISH.

Succeeds on FISH. Skips FOWL and GOOD RED HERRING
suboperands.

Mazch.

3. Fail. Only part of the third suboperand is present.

4. Fail. AMETHYSTS is missing in the -"anored suboperand.

5. Match. All three "and"ed suboperands are present. PerMuted
order is acceptable, because ampersands are used in
the SCAN statement.

6. Match. Fails on the first "and"ed pair of suboperands, becauae
CEDARWOOD is not present. Succeeds on third suboperand
because AND SWEET WHITE WINE is present. Note that the
coder may actually have been thinking of the commas as
a comma rather than as an "or", and failed to turn it
into a literal with single quotes.

154
-151-



(Use of logical

7. M T

operators in SCANS, cont.)

SC SAND,,LTWOOr & CEDARWCOD
AND S,WWET WEITE WINE

SC OT, ILLYRIA;

GEDLRWOOD BUT NC
SATTMALWOOD

TRLS 7S ILLYRIA8. M

9. M F LiC XTCOT., INOT; at_S IS ILLYRIA, DY

10.M 7 SC iLLYRI.4, 7-1ILLYRIA; THIS IS ILLYRIA,

11.M 7 SC-7=T & BREAD; MAN DOES NOT LIVE72'-
E9 =7:AD ALONE

12.M F SC EAT & BREAD; MAN DOES NOT LIAh=
BREAD ALONE

13.M F SC BFEAD & iEAT, NUT; Ti.,17 DICES NOT E./%25

EEEAa ALONE

(solutions to [A] 7-14)

7. Match. Succeeds on the "and"ed pair of stboperands. -:nversion
is an:cep-table 'because of the annex-sand.

8. Match. NOT is not present, so the statement succeeds an the
first suboperand.

9. Match. Fails on first sUhmperand, goes on and succeeds
secamd.

10.Matah. Succeeds on first Eubcperand, skips the secand-

11.Fail. NOT is present, so the first of the two "emZ"ed suboperamds
falls, therefore ail fails.

12.Match. EAT fs not present; BREAD is.

13.Match. EAT-IS present, therefore-b./i.e. two "endued ladbopemands
NOT Is present, so the -1-11-tr,' sUboperand obtmtns a:notch.

155
-152-



-or tt'a exerbises in tt section, all character variables will be
CERA(nuffter): -and all arithmeti2 variables will be labelled

13E0X,rumbel-):.

1. Jef=e CHARAO in sirfa 77ay -that it has room for 95 characters.

T4.2fLte ADDOXO in such _way that it as room for 100,000.

Encufle a statement planing the fcLlawing character string into
C-Fe)7,

THE CUERENT ENROLLNEET LT UCLA ISla

EncoEa a statenant TTPing the nutber 25,000 into ADDOXO.

(scautimns -to [D] 1-4)

TalOW6 D(C) 95;

2. ADD030110: (Tlibminfre is no way to specify the maximum size
an 4=-ri-tannet c -vita--; able )

3. :Ell 'rCHARAO" = '1112_ CURRENT ENROLLrazu AT UCLA ISIEl';

4, Y DD070" = 2500G; (.Don'-t. use -:ormnas)



(varabls, mmnt.)

5. Eh=0.L...e. a _statement that 1474-71 =catenate the nuMber in ADDOXO to
CHARAa.

6. How 7tul.ff you display tm the student the contents of CHARAO at this
moint

7. v77-st TweLd ampear on the acreen?

S. Another student signs up. How do you increment ADDOXO?

9. How dm you bring CHARAO up to date? (Use additional variables
as needed.)

7D] (59)
5. SET "CHAR40" = "CHARAO". 'ADD0710";

6.. WRITE "CHenRAO";

7. THE alFRENT -ENROLTINENT X: 771A IS 25000;

B. SET 1T.=C-170" = "ADDOXO 1;

9. CHARAl: D(C) 34;

SET "CHkRA1" = "CHARAr; ,c.Only the first 34 chaTacter of CHARAO
are stared in GHARA1);

F-A "C2ARAO" = "CHARAl" "AEDOX0";

157
-154-



(Wariables, cont.)

10. As part of the sdgn-in procedure, you might ask the student to

type his last name, following which you ask him to type his first

name and initial. How would you store this information dn both

straight and inverted forms?

(Step 1 - storfng first ANSWER field)

(Step 2 - storing second ANSWER field)

(assume aharacter variables as necessary have been defined)

11. You decide to create a separate list of students' last names, and,

in order to get as many as possible into a single vriable, to save

only the first seven characters of each. How might -you arrange this?

(Feel free to define additional variables as needed.)

(solutions to [D] 10 and 11)

10. (Step 1)

SET "CHARA2" = "ANSWER";

(Step 21

SET "CHAT.A3" = "ANSWER" 21 "CHARA2";

SET "CHARS.2" = "CHARA2" t "ANSWER";

11. CRAHAli: D(C) 7;

CHAIRA5: D(C) 255;

S "CHARA4" = "ANSWER";

S "CHARA5" = "CHARA5" ' "CHARA4";



(Variables, cont.)

12. If all the names are at least seven characters long, how many
can be stuffed into the variable, assuming one blank is left
between each seven character name?

13. How can you find out if a new student has a name identical with
someone already on the list?

To begin:

W WRITE YOUR LAST NAME, PLEASE.;

A;

14. Place the number 144 into ADDOX2, and the number 37 into ADDOX3.

(solutions to [D] 12-14)

12. 31

255 / (1+7)

13. W TYPE YOUR LAST NAME, PLEASE.;

A;

S "CHARA4" = "ANSWER";

S "ANSWER" = "CHARA51';

SC "CHARA4";

MATCH will occur here if the new name is identical to one of the
old names.

14. S "ADDOX2" = 144

S "ADDOX3" = 37;



(Variables, cont.)

15. Place the mean of ADDOX2 and ADDOX3 into ADDOX4.

ADDOX4 will contain

(solution to [D] 15)

15. S "ADDOX4" = "ADDOX2" + "ADDOX3" / 2;

ADDOX4 will contain 90. (144 + 37/2 [note truncation])

-157-

160



(variables, cont.)

16. Suppose you want the student to construct and solve a problem
in cubic measurement, which the program would check for accuracy.
Five inputs are involved. Fill in the blank items. (Solution on

next page.)

W WHAT LINEAR MEASURE WILL YOU USE?;

A;

W HOW WIDE IS THE OBJECT YOU HAVE MEASURED?;

A;

W HOW LONG IS IT,;

A;

W HOW HIGH IS IT?;

A;

W HOW MANY CUBIC DO YOU GET?;

A;

SC "ADDOX ";

-158 -

161



(Variables, cont.)

(solution to [D] 16)

16. W WHAT LINEAR MEASURE WILL YOU USE;

A;

S "CHARA6" = "ANSWER";

W HOW WIDE IS THE OBJECT YOU HAVE MEASURED?;

A;

S "ADDOX5" = "ANSWER";

W HOW LONG IS IT?;

A;

S "ADDOX6" = "ANSWER";

W HOW HIGH IS IT?;

A;

S "ADDOX7" = "ANSWER";

S "ADDOX8" = "ADDOX5" "ADDOX6" "ADDOX7";

W HOW MANY CUBIC "CHARA6" DO YOU GET?

A;

SC "ADDOX8";

(If a match is obtained with this SCAN, the following statement
might be executed:)

W CORRECT.;

If not, the following:

W THAT"S ODD. I GET "ADDOX8" CUBIC "CHARA6".;



E.

DECISIONS

The second group of exercises dealt with one form of decision
making statement: the SCAN statement.

The other decision making statement is the TEST statement. TEST
is used for comparing all of the contents of one variable with all of
the contents of another. It can be used for the comparison of both
character and arithmetic variables.

The following DISCUS rules are worth reviewing before starting
the exercises in this group:

1. TESTS and SCANS may be performed at any point in the program.

2. The two items to be compared in a TEST are always explicitly
stated.

3. A SCAN always compares its operand with the current ANSWER
field.

4. The result of a TEST or of a SCAN is always match or fail,
(success or non-success).

5. This result sets a condition code in the computer, whieh is
tested by subsequent MATCH or FAIL statements.

6. MATCH and FAIL statements concern themselves only with the
preceding TEST (or SCAN) on the same level.

7. A MATCH statement at a given level passes execution to the next
statement if (and only if) the condition code indicates success.
Otherwise it passes control to the statement following the
next END statement on its own level.

8. A FAIL statement is precisely the same as a MATCH statement
except that execution proceeds to the next sequential statement
if the condition code indicates fail.

-160.-

163



Problenm:

1. What would the following roUtine decide: What action(s) would

ensue?

W WHAT FITTINGS ARE USUALLY ASSOCIALED WITH PINTLESS?;

A;

SC GUDGEONS;

M;

W CORRECT;

S. "NAUTICA" = "NAUTICA" 1; (assume NAUTICA previously defined
as an arithmetic variable)

E;

F;

W I"M AFRAID YOU DIDN"T STUDY CHAPTER 4.;

E;

1. The routine would decide whether the student has used the word

"gudgeons" in his reply. Action, if so, would be to display
"Correct" and to increment an arithmetic varidble which had been

defined and labelled NAUTICA. Action, if not so, would be to
display the words "I'm agraid you didn't study chapter 4."

-161_

16 4.



(Decisions, cont.)

2. What would the following routine decide, and what action(s)
would ensue?

W THE THREE MAJOR TYPES OF FILM USED IN MICROGRAPHY

HAWKEN: A;

SC SILVER & DIAZO & VESCICULAR:

M;

W GOOD. YOU REMEMBERED ALL THREE.;

JUMP BAR;

E;

SC SILVER & DIAZO, SILVER & VESCICULAR, DIAZO & VESCICULAR;

M;

W SILVER HALIDE, DIAZO, AND VESCICULAR.;

J BAR;

E;

SC SILVER;

M;

W SILVER HALIDE IS RIGHT. THE OTHER TWO ARE DIAZC JID VESCICULAR.;

J BAR;

E;

SC DIAZO;

M;

W DIAZO IS RIGHT. THE OTHER TWO ARE SILVER HALIDE AND VESCICULAR.;

J BAR;

E;

SC VESCICULAR;

M;

-162-

165



W VESCICULAR IS RIGHT. THE OTHER.TWO ARE SILVER HALIDE AND DIAZO;

J BAR;

E;

F;

W ONE OF THEM USES A PHOTOSENSITIVE METALLIC SALT EMULSION/

ONE OF THEM USES A PHOTOSENSITIVE DYE/

ONE OF THEM USES BUBBLES /// TRY AGAIN.;

J EAWKEN;

E;

BAR: W WE WILL NOW SING HYMN NUMBER 35;

The form of "verbal flowchart" furnished on the page which follows is

useful for this kind of exercise.

_163-

166



FRAME LABE L : WIDR= RILL=

(

(

(

(

(

(

(

)

)

)

)

)

)

)

Test: Then:

Whether

If y-es

Whether

If =t,

If yes ,

Whether

If not ,

If yes ,

Whether

If not ,

If yes ,

Whether

If not ,

If yes ,

Whether

If not,

If yes ,

Whether

If not,

If yes ,

If not,

-la-
. 167



(Decisions, cont_)

rscl=tion to iE 2)

FRgME LABEL:

:

'1) Whether

student inputs all 3

2) Vhether

stuaent inputs any 2

WORKSHRTIT

If yes, Display "Good, etc.";

jump to BAR

If not, Go to next scan (2)

If yes, Display complete answer,

jump to BAR

If not, Go to next scan (3)

(3) Whether

student inputs "silver" only If yes, "Silver is right...etc.".

jump to BAR

If not, (4;)

(4) Whether

student inputs "diazo" only If yes, "Diazo is right...etc.".

jump to BAR

If not, (5)

(5) Whether

student inputs 'vescicular" only If yes, "Vescicular is right...etc

jump to BAR

(6) Whether

student input was unrecognized

( ) Whether

-165-

icVR.

If not, (6)

If yes, Display hint; jump back to

location of ANSWER statement.

If not, (not applicable in this case.)

If yes,

If not,



The neJ:t 7,hree Troble-ls de_l with th±s same example.

3. Rracket the MATCH and FAIL blocks in the coded "source" program,
as in this example:

M;

W GOOL- YOU REMEMBERED ALL THREE.;

J BAR;

E;

Does the number of END opcoaes equal the sum of MATCH and FAIL
opcodes?

Assuming that the sequence begins at condition code level 1,
indicate the condition code level applying to each block.

4 Was the last block - the FAIL block - really necessary as such?

(solutions to [E] 3-4)

3. The number of END opcodes (6) equals the sum of MATCH (5) and
FAIL (1) opcodes.

Condition level 2 is in effect in all blocks, since none of them
are nested.

4. No. The last entry on your decision worksheet should indicate
this. The WRITE statement and the JUMP back to the ANSWER
statement will invariably operate whenever execution reaches
them. Execution can reach them only if none of the preceding
MATCH blocks has been successfully entered.

FAIL block should be used principally to identify a class of
failure, rather than total failure. This implies that one or
more general "cleanup" statements is often needed before pro-
ceeding to the next question.

ftgb



How mdght you dmiarcve the Sca4 for "vescicular", assuming that
a=curate upellf:az ia mot a prime requisite here?

(solution to [E] 5)

5. Probably "vescicular" would be misspelled oftenest as

vesicular

vesiculler

vesiculer

vesciculler

vescicullar

vesciculer

So the most vulnerable letters are those underlined below:

VESCICULAR

These can be "forgiven" by encoding the word as 3 literal
strings or required elements

' VES"ICU"R '

170
-167-



(Decisions, cont.)

Note: the sequence of code of question 2 (page162) may be written
so that the scanning and writing functions are separated,
as follows:

W THE THREE MAJOR TYPES OF FILM USED IN MICROGRAPHY ARE

S "ENU" = 0;

HAWKEN: A;

SC SILVER, DIAZO, VESCICULAR;

1 M;

SC SILVER;

2 M;

S "EMU" = "EMU" + 1;

E;

SC DIAZO;

3 M;

S "EMU" = "EMU" + 2;

E;

SC VESCICULAR;

4 M;

S "EMU" = "EMU" + 4;

E;

T "EMU" = 7;

5 M;

W GOOD, YOU REMEMBERED ALL THREE;

E;

T "EMU" = 6;

-168-



(Decisions, cont.)

6 M;

W "DIA" AND "VES" ARE CORRECT. THE THIRD ONE IS "SIL";

E;

T "EMU" = 5;

7 M;

W "SIL" AND "VES" ARE CORRECT. THE THIRD ONE IS "DIA";

E;

T "EMU" = 3;

8 M;

W "SIL" AND "DIA" ARE CORRECT. THE THIRD ONE IS "VES";

E;

T "EMU" = 1;

9 m;

W "SIL" IS RIGHT. THE OTHER TWO ARE "DIA" AND "VES";

E;

T "EMU" = 2

10 M;

W "DIA" IS RIGHT. THE OTBER TWO ARE "SIL" AND "VES";

E;

T "EMU" = 4;



(decisions, cont)

11 M;

W "VES" IS RIGHT. THE OTHER TWO ARE "SIL" AHD "DIA";

E;

J BAR;

E;

W ONE OF THEM ---etc--- TRY AGAIN.;

J HAWKER;

BAR

The above routine combines effective control with economy of means,
besides lending itself to further extension. Note that it enabled
us to improve on the earlier "shotgun" response to answers containing
only two out of the three terms sought.


